Protocol for the Examination of Specimens From Patients With Carcinoma of the Fallopian Tube

Protocol applies to all carcinomas presumed to be arising from the mucosa of the fallopian tube.

Based on AJCC/UICC TNM, 7th edition, and FIGO 2006 Annual Report
Protocol web posting date: October 2013

Procedures
• Unilateral Salpingectomy
• Salpingo-Oophorectomy
• Hysterectomy With Salpingo-Oophorectomy

Authors
Blaise A. Clarke, MBCh, FRCPC*
Department of Pathology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
Christopher P. Crum, MD, FCAP
Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
Marisa R. Nucci, MD, FCAP
Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
Esther Oliva, MD, FCAP
Department of Pathology, Harvard University, Massachusetts General Hospital, Boston, Massachusetts
Kumarasen Cooper, MBChB, DPhil, FRCPath†
Department of Pathology, University of Vermont, Fletcher Allen Health Care, Burlington, Vermont
For the Members of the Cancer Committee, College of American Pathologists

* Denotes primary author. † Denotes senior author. All other contributing authors are listed alphabetically.

Previous contributors: Philip A. Branton, MD; Donald Earl Henson, MD; Mary L. Nielsen, MD; Stephen G. Ruby, MD; Robert E. Scully, MD
The College does not permit reproduction of any substantial portion of these protocols without its written authorization. The College hereby authorizes use of these protocols by physicians and other health care providers in reporting on surgical specimens, in teaching, and in carrying out medical research for nonprofit purposes. This authorization does not extend to reproduction or other use of any substantial portion of these protocols for commercial purposes without the written consent of the College.

The CAP also authorizes physicians and other health care practitioners to make modified versions of the Protocols solely for their individual use in reporting on surgical specimens for individual patients, teaching, and carrying out medical research for non-profit purposes.

The CAP further authorizes the following uses by physicians and other health care practitioners, in reporting on surgical specimens for individual patients, in teaching, and in carrying out medical research for non-profit purposes: (1) **Dictation** from the original or modified protocols for the purposes of creating a text-based patient record on paper, or in a word processing document; (2) **Copying** from the original or modified protocols into a text-based patient record on paper, or in a word processing document; (3) The use of a **computerized system** for items (1) and (2), provided that the protocol data is stored intact as a single text-based document, and is not stored as multiple discrete data fields.

Other than uses (1), (2), and (3) above, the CAP does not authorize any use of the Protocols in electronic medical records systems, pathology informatics systems, cancer registry computer systems, computerized databases, mappings between coding works, or any computerized system without a written license from the CAP.

Any public dissemination of the original or modified protocols is prohibited without a written license from the CAP.

The College of American Pathologists offers these protocols to assist pathologists in providing clinically useful and relevant information when reporting results of surgical specimen examinations of surgical specimens. The College regards the reporting elements in the “Surgical Pathology Cancer Case Summary” portion of the protocols as essential elements of the pathology report. However, the manner in which these elements are reported is at the discretion of each specific pathologist, taking into account clinician preferences, institutional policies, and individual practice.

The College developed these protocols as an educational tool to assist pathologists in the useful reporting of relevant information. It did not issue the protocols for use in litigation, reimbursement, or other contexts. Nevertheless, the College recognizes that the protocols might be used by hospitals, attorneys, payers, and others. Indeed, effective January 1, 2004, the Commission on Cancer of the American College of Surgeons mandated the use of the required data elements of the protocols as part of its Cancer Program Standards for Approved Cancer Programs. Therefore, it becomes even more important for pathologists to familiarize themselves with these documents. At the same time, the College cautions that use of the protocols other than for their intended educational purpose may involve additional considerations that are beyond the scope of this document.

The inclusion of a product name or service in a CAP publication should not be construed as an endorsement of such product or service, nor is failure to include the name of a product or service to be construed as disapproval.
CAP Fallopian Tube Protocol Revision History

Version Code
The definition of the version code can be found at www.cap.org/cancerprotocols.

Version: FallopianTube 3.1.0.1

Summary of Changes
The following changes have been made since the February 2011 release.

Unilateral Salpingectomy, Salpingo-Oophorectomy, or Hysterectomy With Salpingo-Oophorectomy

Tumor Site
“Cannot be determined” was added under each main element, as follows:

Tumor Site (select all that apply)
___ Right fallopian tube
 Relationship to ovary:
 ___ Not fused
 ___ Fused
 ___ Cannot be determined
 Status of fimbriated end (Note B):
 ___ Open
 ___ Closed
 ___ Cannot be determined
___ Left fallopian tube
 Relationship to ovary:
 ___ Not fused
 ___ Fused
 ___ Cannot be determined
 Status of fimbriated end (Note B):
 ___ Open
 ___ Closed
 ___ Cannot be determined
___ Not specified
Surgical Pathology Cancer Case Summary

Protocol web posting date: October 2013

FALLOPIAN TUBE: Unilateral Salpingectomy, Salpingo-Oophorectomy, or Hysterectomy With Salpingo-Oophorectomy

Select a single response unless otherwise indicated.

Specimen (select all that apply)
___ Right fallopian tube
___ Left fallopian tube
___ Right ovary
___ Left ovary
___ Uterus
___ Other (specify): _________________________
___ Not specified

Procedure (select all that apply)
___ Right salpingectomy
___ Left salpingectomy
___ Right salpingo-oophorectomy
___ Left salpingo-oophorectomy
___ Hysterectomy with salpingo-oophorectomy
___ Other (specify): ___________________________
___ Not specified

Lymph Node Sampling (select all that apply)
___ Lymph node sampling not performed
___ Common iliac
___ External iliac
___ Internal iliac (hypogastric)
___ Obturator
___ Para-aortic
___ Inguinal
___ Pelvic nodes, not otherwise specified (NOS)

Tumor Site (select all that apply) (Note A)
___ Right fallopian tube
 Relationship to ovary:
 ___ Not fused
 ___ Fused
 ___ Cannot be determined
Status of fimbriated end (Note B):
___ Open
___ Closed
___ Cannot be determined

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important but are not yet validated or regularly used in patient management.
___ Left fallopian tube
 Relationship to ovary:
 ___ Not fused
 ___ Fused
 ___ Cannot be determined
 Status of fimbriated end (Note B):
 ___ Open
 ___ Closed
 ___ Cannot be determined
___ Not specified

Tumor Location (select all that apply)
___ Fimbria(e)
___ Ampulla
___ Infundibular portion
___ Isthmus
___ Cannot be determined

Specimen Integrity
Specify side: _______________
 ___ Intact
 ___ Ruptured
 ___ Fragmented
 ___ Other (specify): __________________________

Tumor Size
Greatest dimension: ___ cm
+ Additional dimensions: ___ x ___ cm
___ Cannot be determined (see Comment)

Histologic Type (Notes D and E)
___ Tubal intraepithelial carcinoma (specify type): _______________________
___ Serous carcinoma
___ Mucinous carcinoma
___ Endometrioid carcinoma
___ Clear cell carcinoma
___ Transitional cell carcinoma
___ Squamous cell carcinoma
___ Undifferentiated carcinoma
___ Other (specify): _______________________
___ Carcinoma, type cannot be determined

Histologic Grade (Note F)
___ Not applicable
___ GX: Cannot be assessed
___ G1: Well differentiated
___ G2: Moderately differentiated
___ G3: Poorly differentiated

+ Microscopic Tumor Extension (select all that apply)
+ ___ Fallopian tube
+ ___ Other organs/tissues (specify): _______________________

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important but are not yet validated or regularly used in patient management.
Lymph-Vascular Invasion
- Not identified
- Present
- Indeterminate

Lymph Nodes (select all that apply)
- Not applicable
- Common iliac
 - Number examined: ___
 - Number positive: ___
- External iliac
 - Number examined: ___
 - Number positive: ___
- Internal iliac (hypogastric)
 - Number examined: ___
 - Number positive: ___
- Obturator
 - Number examined: ___
 - Number positive: ___
- Para-aortic
 - Number examined: ___
 - Number positive: ___
- Pelvic nodes, NOS
 - Number examined: ___
 - Number positive: ___

Pathologic Staging (pTNM [FIGO]) (Note G)

TNM Descriptors (required only if applicable) (select all that apply)
- m (multiple primary tumors)
- r (recurrent)
- y (post-treatment)

Primary Tumor (pT)
- pTX: Primary tumor cannot be assessed
- pT0: No evidence of primary tumor
- pTis: Tubal intraepithelial carcinoma (limited to tubal mucosa)
- pT1 [I]: Tumor limited to fallopian tube(s)
 - + pT1a [IA]: Tumor limited to 1 tube without penetrating the serosal surface; no ascites
 - + pT1b [IB]: Tumor limited to both tubes without penetrating the serosal surface; no ascites
 - + pT1c [IC]: Tumor limited to 1 or both tube(s) with extension into or through the tubal serosa; or with malignant cells in ascites or peritoneal washings
- pT2 [II]: Tumor involves 1 or both tube(s) with pelvic extension
 - + pT2a [IIA]: Extension and/or metastasis to the uterus and/or ovaries
 - + pT2b [IIB]: Extension to other pelvic structures
 - + pT2c [IIC]: Pelvic extension (T2a or T2b/IIA or IIB) with malignant cells in ascites or peritoneal washings
- pT3 and/or N1 [III]: Tumor involves 1 or both tube(s) with peritoneal implants outside the pelvis and/or regional lymph node metastasis
 - + pT3a [IIIA]: Microscopic peritoneal metastasis beyond pelvis
 - + pT3b [IIIB]: Macroscopic peritoneal metastasis beyond pelvis 2 cm or less in greatest dimension

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important but are not yet validated or regularly used in patient management.
___ pT3c/N1 [IIIC]: Peritoneal metastasis beyond pelvis more than 2 cm in greatest dimension and/or regional lymph node metastasis
___ Any T/Any N and M1 [IV]: Distant metastasis including presence of malignant cells in pleural fluid or parenchymal hepatic metastasis

Regional Lymph Nodes (pN)
___ pNX: Cannot be assessed
___ pN0: No regional lymph node metastasis
___ pN1 [IIIC]: Regional lymph node metastasis
___ No nodes submitted or found

Number of Lymph Nodes Examined
Specify: ____
___ Number cannot be determined (explain): __________________________

Number of Lymph Nodes Involved
Specify: ____
___ Number cannot be determined (explain): __________________________

Distant Metastasis (pM)
___ Not applicable
___ pM1 [IV]: Distant metastasis
 + Specify site(s), if known: __________________________

+ Additional Pathologic Findings (select all that apply)
+ ___ None identified
+ ___ Salpingitis (type): __________________________ (Note H)
+ ___ Other (specify): __________________________

+ Ancillary Studies (select all that apply)
+ ___ P53 immunostaining
 + ___ Positive
 + ___ Negative
+ ___ Other (specify): __________________________

+ Clinical History (select all that apply)
+ ___ BRCA1/BRCA2 family history
+ ___ Other (specify): __________________________

+ Comment(s)
Explanatory Notes

A. Site(s) of Origin of Tumor

When a tumor (typically of serous subtype) involves both the fallopian tube and the ovary, it may be difficult to determine the primary site of the tumor. Historically, serous carcinomas involving both the ovary and fallopian tube have been assumed to arise from the ovary; however, recent data suggests that the fallopian tube may be the primary source for at least a significant number of these tumors. Examination of prophylactic salpingo-oophorectomy specimens from BRCA+ patients has provided the opportunity to extensively evaluate both the fallopian tubes and ovaries from women at high risk to develop ovarian cancer, and therefore detect “very early” tumors. Interestingly, studies have shown that most early carcinomas detected in these specimens occur in the tubal fimbria, and many of them are still confined to the mucosa in the form of tubal intraepithelial carcinoma. These findings raise an important paradox, namely BRCA+ women that are known to have an increased risk of ovarian cancer, rather have a significant portion of early cancers arising in the fallopian tube. Thus, it has been postulated that the fimbriated end of the fallopian tube is the portion of the tubal mucosa that is at greatest risk to develop early serous carcinoma in BRCA+ women.

Medeiros and colleagues have developed a meticulous protocol (SEE-FIM [see Figure 1]) for carefully evaluating the fallopian tube that maximizes examination of the fimbriated end in order to detect these “early carcinomas.” In addition, the ovaries should be sectioned at 2- to 3-mm intervals and submitted in toto for histological examination. Using this protocol, 7 early carcinomas were detected in BRCA+ patients over a 2-year period. All cancers involved the fallopian tube, and 6 were centered in the fimbria. Thus, the distal fallopian tube appears to be most frequently involved in cases of early serous carcinoma in BRCA+ women.

Fallopian tube carcinoma does not appear to be unique to BRCA+ women, as the topography of tubal carcinoma from BRCA+ and BRCA- women seems to be equivalent. Cass and colleagues studied 28 patients with fallopian tube carcinoma, 16 of which (48%) were not associated with BRCA mutations; in both groups, fallopian tube carcinoma involved the distal portion with no proximal involvement. When combining the studies from Medeiros et al, Colgan et al, and Callahan et al, 12 of 14 (86%) early serous carcinomas were found to arise in the distal fallopian tube, indicating that virtually all fallopian tube carcinomas arise in the distal (fimbriated) segment of the fallopian tube irrespective of BRCA status, and that a high percentage of early serous carcinoma in BRCA+ patients arise in the distal fallopian tube. In a blinded review by Shaw et al of fallopian tubes from 176 BRCA+ (103 BRCA1 and 73 BRCA2) patients compared with 64 control patients, tubal intraepithelial carcinomas (TICs) were identified in 8% of the BRCA group and 3% of the control group. Other than 1 case in which TIC was located in the midportion of the isthmus, all TICs were found in the fimbria. Review of the literature has shown that in women with pelvic serous carcinoma whose BRCA status is unknown, TICs are present in about 50% of cases, leading to the conclusion that the fallopian tube is a major site of origin for pelvic serous carcinoma, regardless of BRCA status.

In practice, because of the diffuse distribution of pelvic serous carcinoma, it may be challenging to assign site of origin: ovarian, tubal or peritoneal. Traditionally, this has based on the location of the bulk of the tumor, with ovarian carcinoma demonstrating predominant involvement of the ovarian parenchyma, whereas the salpinx is implicated if the tumor is centered mainly in the tube with minimal ovarian surface involvement. Primary peritoneal carcinoma requires the presence of extensive and predominant peritoneal disease with normal ovaries or involvement confined to ovarian serosal surface or cortical invasion limited to 5 mm by 5 mm. The immunophenotype of serous carcinomas in these sites (ovary, tube and peritoneum) is similar, suggesting a common cell of origin, regardless of site. In the presence of diffuse disease, if tubal intraepithelial carcinoma is present, these should be regarded as tubal carcinomas. This requires processing of the fimbrial end of the fallopian tube (see Figure 1). It is acknowledged that in cases of diffuse serous carcinoma, tumor implants may be seen on the tubal
mucosa, making definitive assessment of tubal intraepithelial carcinoma impossible. In such cases, the phrase “serous carcinoma of tubal/ovarian origin” may be used.

Figure 1. Protocol for Sectioning and Extensively Examining the FIMbriated End (SEE-FIM) of the Fallopian Tube. This protocol entails amputation and longitudinal sectioning of the infundibulum and fimbrial segment (distal 2 cm) to allow maximal exposure of the tubal plicae. The isthmus and ampulla are cut transversely at 2- to 3-mm intervals.

B. Fimbriated End
Although most investigators have not commented on the possible prognostic significance of the status of the fimbriated end, in 2 series of cases of tubal carcinoma, closure of the fimbriated end was associated with lower stage of the tubal carcinoma.

C. Selection of Specimens for Microscopic Examination

Primary Tumor
- If visible mass: sections adequate to demonstrate extent of tumor, including maximal depth of invasion and relationship to surrounding organs/tissues, if present, should be taken. Sections showing transition to grossly uninvolved areas of fallopian tube are also helpful.
- If no visible tumor (typically in prophylactic oophorectomy): entirely submit the fimbriated end of the fallopian tube to search for carcinoma in situ (tubal intraepithelial carcinoma) or a small carcinoma, as the fimbriated end of the fallopian tube appears to be the most common site for “early carcinoma” (Note A) either in BRCA+ or BRCA− patients. Serial longitudinal sections of the fallopian tube fimbria at 2- to 3-mm intervals should be performed to examine the most surface of the plicae (see Figure 1). The rest of the fallopian tube can be serially sectioned transversally.

Uterus
- Tumor grossly present: sections necessary to determine tumor extent, including depth of invasion of myometrium if tumor originates in endometrium, and to determine relation to tubal tumor (for primary tumors of endometrium, see CAP endometrium protocol).

Nonfused Ovary or Ovaries
- Tumor visible in the ovary: sections to determine relation to tubal tumor(s).
- No tumor in the ovary but visible tumor in the fallopian tube: representative section(s).
- No tumor visible in the fallopian tube or ovary (mainly in prophylactic oophorectomy); serial sections of the ovary along the shorter axis to be able to evaluate the maximum ovarian surface.
Omentum
- Representative sampling of grossly identifiable tumor.
- If no visible tumor, multiple sections are generally optimal because of the possible impact of microscopically detected disease on prognosis and therapy.

Lymph Nodes
- Representative sections of grossly positive lymph nodes are generally adequate.
- If lymph nodes appear to be grossly free of tumor, an attempt should be made to identify and submit the entire lymph node(s). If they are large, they should be bivalved along their long axis, and both halves should be entirely submitted.

Other Staging Biopsy Specimens
- Submit entirely (unless grossly positive, in which case a representative section usually suffices).

Other Excised Organ(s) or Tissue(s)
- Sections adequate to determine presence or absence, and location and extent of tumor, if present.
- Resection margins, if applicable.

D. Histologic Type
The histologic classification proposed by the World Health Organization (WHO) is recommended, as shown below.

WHO Classification of Carcinoma of the Fallopian Tube
- Carcinoma in situ
- Serous carcinoma
- Mucinous carcinoma
- Endometrioid carcinoma
- Clear cell carcinoma
- Transitional cell carcinoma
- Squamous cell carcinoma
- Mixed carcinoma
- Undifferentiated carcinoma

E. Immunohistochemistry
Immunohistochemistry is a useful adjunct in recognition and classification of precursor lesions and carcinomas of the fallopian tube. Although there is no universally accepted classification schema for the precursor lesions encountered in prophylactic BSO specimens, Jarboe and colleagues have proposed a serous carcinogenesis sequence which incorporates immunohistochemical profiles. These lesions can be focal, and serial sections may be required.

Serous tubal intraepithelial carcinoma (STIC) comprises a discreetly different population of epithelial cells replacing the normal tubal mucosa and characterized by (1) increased nuclear to cytoplasmic ratio with more rounded nuclei, (2) loss of cell polarity, (3) prominent nucleoli, and (4) absence of ciliated cells. Additional features that may be encountered include (5) epithelial stratification, (6) small fracture lines in the epithelium, and (7) exfoliation from the tubal surface of small epithelial cell clusters with or without degenerative changes. The cells exhibit uniformly strong nuclear staining for p53. The MIB-1 index ranges from 40% to nearly 100%, with the majority of cases showing focal areas exceeding 70%.

The latent precursor (p53 signature) refers to foci of at least 12 consecutive morphologically benign, p53 positive secretory cells with low MIB-1 proliferative index. Tubal intraepithelial lesion in transition refers to
p53 positive foci with features intermediate between p53 signatures and STICs. The p53 signature and tubal intraepithelial lesion in transition are NOT recommended as diagnostic terms because their reproducibility and clinical significance is as yet uncertain. Use of biomarkers is not necessary in the presence of STIC, but if there is diagnostic uncertainty, both p53 and MIB-1 staining should be performed.

Panels of biomarkers have been used to distinguish cell type in ovarian carcinoma and similar markers could be used to classify fallopian tube carcinomas. Using individual markers, WT-1 is a marker of ovarian/tubal serous carcinoma and HNF-1 is a marker of clear cell carcinoma. WT-1 has a sensitivity of 79.9% and specificity of 97.4% for ovarian/tubal serous carcinoma and HNF-1 has a sensitivity of 82.5% and specificity of 95.2% for clear cell carcinoma. However, a diagnostic panel consisting of ER, WT-1 and HNF-1 has been recommended to distinguish serous and clear cell types in ovary, with the former being positive for ER and WT-1 and the latter positive for HNF-1. Other authors have suggested a combination of p16 and WT-1 (both positive in serous carcinoma) as a reliable panel for discriminating high-grade serous carcinoma from other subtypes of ovarian carcinoma.

F. Histologic Grade

No specific grading system for tubal cancers is recommended. However, it is suggested that 3 grades be used to parallel the grading systems of endometrial and ovarian tumors, which are histologically similar to those encountered in the fallopian tube.

GX Cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3 Poorly differentiated

Undifferentiated carcinoma equals grade 4, and it is applied to tumors with no differentiation or minimal differentiation that is discernible in only rare tiny foci.

G. TNM and Stage Groupings

The TNM staging system for fallopian tube endorsed by the American Joint Committee on Cancer (AJCC) and the International Union Against Cancer (UICC), and the parallel system formulated by the International Federation of Gynecology and Obstetrics (FIGO) are recommended as shown below.

By AJCC/UICC convention, the designation “T” refers to a primary tumor that has not been previously treated. The symbol “p” refers to the pathologic classification of the TNM, as opposed to the clinical classification, and is based on gross and microscopic examination. pT entails a resection of the primary tumor or biopsy adequate to evaluate the highest pT category, pN entails removal of nodes adequate to validate lymph node metastasis, and pM implies microscopic examination of distant lesions. Clinical classification (cTNM) is usually carried out by the referring physician before treatment during initial evaluation of the patient or when pathologic classification is not possible.

Pathologic staging is usually performed after surgical resection of the primary tumor. Pathologic staging depends on pathologic documentation of the anatomic extent of disease, whether or not the primary tumor has been completely removed. If a biopsied tumor is not resected for any reason (eg, when technically unfeasible) and if the highest T and N categories or the M1 category of the tumor can be confirmed microscopically, the criteria for pathologic classification and staging have been satisfied without total removal of the primary cancer.
Primary Tumor (T)

<table>
<thead>
<tr>
<th>TNM</th>
<th>FIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>(-)</td>
</tr>
<tr>
<td>T0</td>
<td>(-)</td>
</tr>
<tr>
<td>Tis</td>
<td>(-)</td>
</tr>
<tr>
<td>T1</td>
<td>Stage I</td>
</tr>
<tr>
<td>T1a</td>
<td>Stage IA</td>
</tr>
<tr>
<td>T1b</td>
<td>Stage IB</td>
</tr>
<tr>
<td>T1c</td>
<td>Stage IC</td>
</tr>
<tr>
<td>T2</td>
<td>Stage II</td>
</tr>
<tr>
<td>T2a</td>
<td>Stage IIA</td>
</tr>
<tr>
<td>T2b</td>
<td>Stage IIB</td>
</tr>
<tr>
<td>T2c</td>
<td>Stage IIC</td>
</tr>
<tr>
<td>T3 and/or N1</td>
<td>Stage III</td>
</tr>
<tr>
<td>T3a</td>
<td>Stage IIIA</td>
</tr>
<tr>
<td>T3b</td>
<td>Stage IIIB</td>
</tr>
<tr>
<td>T3c and/or N1</td>
<td>Stage IIIC</td>
</tr>
<tr>
<td>M1</td>
<td>Stage IV</td>
</tr>
</tbody>
</table>

Definition

TX (-) Primary tumor cannot be assessed
T0 (-) No evidence of primary tumor
Tis (-) Carcinoma in situ (limited to tubal mucosa)
T1 Stage I Tumor limited to fallopian tube(s)
T1a Stage IA Tumor limited to 1 tube without penetrating the serosal surface; no ascites
T1b Stage IB Tumor limited to both tubes without penetrating the serosal surface; no ascites
T1c Stage IC Tumor limited to 1 or both tube(s) with extension onto or through the tubal serosa, or with malignant cells in ascites or peritoneal washings
T2 Stage II Tumor involves 1 or both fallopian tube(s) with pelvic extension
T2a Stage IIA Extension and/or metastasis to the uterus and/or ovaries
T2b Stage IIB Extension to other pelvic structures
T2c Stage IIC Pelvic extension (T2a or T2b/IId or IIB) with malignant cells in ascites or peritoneal washings
T3 and/or N1 Stage III Tumor involves 1 or both fallopian tube(s) with peritoneal implants outside of the pelvis and/or positive regional lymph nodes
T3a Stage IIIA Microscopic peritoneal metastasis outside the pelvis
T3b Stage IIIB Macroscopic peritoneal metastasis outside the pelvis 2 cm or less in greatest dimension
T3c and/or N1 Stage IIIC Peritoneal metastasis more than 2 cm in greatest dimension and/or positive regional lymph nodes
M1 Stage IV Distant metastasis (excludes peritoneal metastasis)

Note: Liver capsule metastasis is T3/stage III; liver parenchymal metastasis is MI/stage IV. Pleural effusion must have positive cytology for MI/stage IV.

Some authors recommend a modified FIGO staging system for fallopian tube carcinomas subdividing stage IA and IB in 3 subcategories, as they found depth of invasion to be a very important prognostic factor in these tumors. Those include:

- **Stage IA-0:** Growth limited to 1 tube with no extension into lamina propria
- **Stage IA-1:** Growth limited to 1 tube with extension into the lamina propria, but no extension into muscularis
- **Stage IA-2:** Growth limited to 1 tube with extension into muscularis

The same substaging is applied to stage IB tubal carcinomas.

Some authors also recommend using stage IF for fimbrial carcinomas, as they seem to be associated with worse prognosis because the tumor cells are exposed directly to the peritoneal cavity even though they do not invade the tubal wall.

The above proposals for altering the FIGO classification are particularly important in staging of early carcinomas such as those that have been detected in salpingo-oophorectomy specimens from BRCA-positive patients undergoing prophylactic oophorectomy.
Regional Lymph Nodes (N) (TNM Staging System)

NX Regional lymph nodes cannot be assessed
N0 No regional lymph nodes metastasis
N1 Regional lymph node metastasis

Distant Metastasis (M) (TNM Staging System)

M0 No distant metastasis
M1 Distant metastasis

TNM Stage Groupings

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IC</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIA</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIC</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIC</td>
<td>T3c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

TNM Descriptors

For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

The “m” suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

The “y” prefix indicates those cases in which classification is performed during or following initial multimodality therapy (ie, neoadjuvant chemotherapy, radiation therapy, or both chemotherapy and radiation therapy). The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy (ie, before initiation of neoadjuvant therapy).

The “r” prefix indicates a recurrent tumor when staged after a documented disease-free interval, and is identified by the “r” prefix: rTNM.

The “a” prefix designates the stage determined at autopsy: aTNM.

Additional Descriptors

Residual Tumor (R)

Tumor remaining in a patient after therapy with curative intent (eg, surgical resection for cure) is categorized by a system known as R classification, shown below.

RX Presence of residual tumor cannot be assessed
R0 No residual tumor
R1 Microscopic residual tumor
R2 Macroscopic residual tumor
For the surgeon, the R classification may be useful to indicate the known or assumed status of the completeness of a surgical excision. For the pathologist, the R classification is relevant to the status of the margins of a surgical resection specimen. That is, tumor involving the resection margin on pathologic examination may be assumed to correspond to residual tumor in the patient and may be classified as macroscopic or microscopic according to the findings at the specimen margin(s).

Lymph-Vascular Invasion (LVI)
LVI indicates whether microscopic lymph-vascular invasion is identified. LVI includes lymphatic invasion, vascular invasion, or lymph-vascular invasion. By AJCC/UICC convention, LVI does not affect the T category indicating local extent of tumor unless specifically included in the definition of a T category.

H. Other Lesions
Severe salpingitis, including tuberculous salpingitis, can be associated with severe cytologic atypia (pseudocarcinomatous changes) in the fallopian tube.\(^{21}\) In contrast, carcinoma is rarely associated with severe salpingitis. Therefore, the presence of severe inflammation should alert the pathologist to the possibility of a pseudocarcinomatous change. p53 may be helpful to distinguish between reactive cytologic changes and carcinoma in situ in the fallopian tube, the latter being typically positive.\(^{3}\) Endometriosis may be present in the background of endometrioid carcinoma of the tube.\(^{9}\)

References

