Protocol for the Examination of Specimens From Patients With Tumors of Soft Tissue

Protocol applies to soft tissue tumors of intermediate (locally aggressive) and intermediate (rarely metastasizing) potential and malignant soft tissue tumors.

Based on AJCC/UICC TNM, 7th edition
Protocol web posting date: October 2013

Procedures
• Biopsy
• Resection

Authors
Brian P. Rubin, MD, PhD, FCAP*
Department of Anatomic Pathology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, Ohio
Kumarasen Cooper, MBChB, DPhil, FRCPath
Department of Pathology, University of Vermont, Fletcher Allen Health Care, Burlington, Vermont
Christopher D.M. Fletcher, MD, FRCPath
Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
Andrew Lawrence Folpe, MD, FCAP
Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
Francis H. Gannon, MD, FCAP
Department of Pathology, Baylor College of Medicine, Houston, Texas
Jennifer Leigh Hunt, MD, FCAP
Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, Ohio
Alexander J. Lazar, MD PhD, FCAP
Department of Pathology, Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
Anthony G. Montag, MD
Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
Terrance D. Peabody, MD
Department of Orthopedic Surgery, University of Chicago Medical Center, Chicago, Illinois
Raphael E. Pollock, MD, PhD
Department of Surgical Oncology, Sarcoma Research Center, The University of Texas M D Anderson Cancer Center, Houston, Texas
John D. Reith, MD, FCAP
Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
Stephen J. Quailman, MD, FCAP**
Department of Laboratory Medicine, Children’s Hospital, Columbus, Ohio
Andrew E. Rosenberg, MD, FCAP
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
Sharon W. Weiss, MD, FCAP
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
Thomas Krausz, MD, FRCPath†
Department of Pathology, University of Chicago Medical Center, Chicago, Illinois
For the Members of the Cancer Committee, College of American Pathologists

* Denotes primary author. † Denotes senior author. All other contributing authors are listed alphabetically.
** Deceased.
© 2013 College of American Pathologists (CAP). All rights reserved.

The College does not permit reproduction of any substantial portion of these protocols without its written authorization. The College hereby authorizes use of these protocols by physicians and other health care providers in reporting on surgical specimens, in teaching, and in carrying out medical research for nonprofit purposes. This authorization does not extend to reproduction or other use of any substantial portion of these protocols for commercial purposes without the written consent of the College.

The CAP also authorizes physicians and other health care practitioners to make modified versions of the Protocols solely for their individual use in reporting on surgical specimens for individual patients, teaching, and carrying out medical research for non-profit purposes.

The CAP further authorizes the following uses by physicians and other health care practitioners, in reporting on surgical specimens for individual patients, in teaching, and in carrying out medical research for non-profit purposes: (1) **Dictation** from the original or modified protocols for the purposes of creating a text-based patient record on paper, or in a word processing document; (2) **Copying** from the original or modified protocols into a text-based patient record on paper, or in a word processing document; (3) The use of a **computerized system** for items (1) and (2), provided that the protocol data is stored intact as a single text-based document, and is not stored as multiple discrete data fields.

Other than uses (1), (2), and (3) above, the CAP does not authorize any use of the Protocols in electronic medical records systems, pathology informatics systems, cancer registry computer systems, computerized databases, mappings between coding works, or any computerized system without a written license from the CAP.

Any public dissemination of the original or modified protocols is prohibited without a written license from the CAP.

The College of American Pathologists offers these protocols to assist pathologists in providing clinically useful and relevant information when reporting results of surgical specimen examinations of surgical specimens. The College regards the reporting elements in the “Surgical Pathology Cancer Case Summary” portion of the protocols as essential elements of the pathology report. However, the manner in which these elements are reported is at the discretion of each specific pathologist, taking into account clinician preferences, institutional policies, and individual practice.

The College developed these protocols as an educational tool to assist pathologists in the useful reporting of relevant information. It did not issue the protocols for use in litigation, reimbursement, or other contexts. Nevertheless, the College recognizes that the protocols might be used by hospitals, attorneys, payers, and others. Indeed, effective January 1, 2004, the Commission on Cancer of the American College of Surgeons mandated the use of the required data elements of the protocols as part of its Cancer Program Standards for Approved Cancer Programs. Therefore, it becomes even more important for pathologists to familiarize themselves with these documents. At the same time, the College cautions that use of the protocols other than for their intended educational purpose may involve additional considerations that are beyond the scope of this document.

The inclusion of a product name or service in a CAP publication should not be construed as an endorsement of such product or service, nor is failure to include the name of a product or service to be construed as disapproval.
CAP Soft Tissue Protocol Revision History

Version Code
The definition of version code can be found at www.cap.org/cancerprotocols.

Version: SoftTissue 3.1.2.0

Summary of Changes
The following changes have been made since the June 2012 release.

Biopsy: Resection

Treatment Effect
Added “required only if applicable” to this element.

Explanatory Notes

A. Tissue Processing
Table 1 was updated.

C. Histologic Classification
The WHO classification was updated.

D. Grading
The second sentence was modified, as follows:
Whilst normograms assess multiple clinical and histological parameters to calculate the probability of recurrence for a given patient,⁵ there is, however, no generally agreed-upon scheme for grading soft tissue tumors.⁶

Differentiation: The definitions of the scores were updated.

Table 2
The histologic types were updated.

Mitosis Count: Score 3 definition was updated.
Tumor Necrosis: Score 1 and 2 definitions were updated.

References
References #4, 5, and 7 were updated.

Important Note
These recommendations are designed to be applied principally to soft tissue sarcomas in teenagers and adults, since pediatric sarcomas are, in general, treated under strict protocols that may differ significantly from the recommendations supplied herein.¹
Surgical Pathology Cancer Case Summary

Protocol web posting date: October 2013

SOFT TISSUE: Biopsy

Select a single response unless otherwise indicated.

Procedure (Note A)
___ Core needle biopsy
___ Incisional biopsy
___ Excisional biopsy
___ Other (specify): ________________________________
___ Not specified

Tumor Site
Specify (if known): ________________________________
___ Not specified

Tumor Size (Note B)
Greatest dimension: ___ cm
+ Additional dimensions: ___ x ___ cm
___ Cannot be determined (see “Comment”)

Macroscopic Extent of Tumor (select all that apply)
___ Superficial
 ___ Dermal
 ___ Subcutaneous-suprafascial
___ Deep
 ___ Fascial
 ___ Subfascial
 ___ Intramuscular
 ___ Mediastinal
 ___ Intra-abdominal
 ___ Retroperitoneal
 ___ Head and neck
 ___ Other (specify): ________________________________
___ Cannot be determined

Histologic Type (World Health Organization [WHO] classification of soft tissue tumors) (Note C)
Specify: ________________________________
___ Cannot be determined

Mitotic Rate (Note D)
Specify: ___ /10 high-power fields (HPF)
(1 HPF x 400 = 0.1734 mm²; X40 objective; most proliferative area)

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important, but are not yet validated or regularly used in patient management.
Necrosis (Note D)
___ Not identified
___ Present
 Extent: ___%
___ Cannot be determined

Histologic Grade (French Federation of Cancer Centers Sarcoma Group [FNCLCC]) (Note D)
___ Grade 1
___ Grade 2
___ Grade 3
___ Ungraded sarcoma
___ Cannot be determined

Margins (for excisional biopsy only) (Note E)
___ Cannot be assessed
___ Margins negative for sarcoma
 Distance of sarcoma from closest margin: ___ cm
 Specify margin:
___ Specify other close (less than 2.0 cm) margin(s):
___ Margin(s) positive for sarcoma
 Specify margin(s):

+ Lymph-Vascular Invasion (Note F)
+ ___ Not identified
+ ___ Present
+ ___ Indeterminate

+ Additional Pathologic Findings
+ Specify: ____________________________

Ancillary Studies (required only if applicable)

Immunohistochemistry
Specify: ____________________________
___ Not performed

Cytogenetics
Specify: ____________________________
___ Not performed

Molecular Pathology
Specify: ____________________________
___ Not performed

Prebiopsy Treatment (select all that apply)
___ No therapy
___ Chemotherapy performed
___ Radiation therapy performed
___ Therapy performed, type not specified
___ Unknown

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important, but are not yet validated or regularly used in patient management.
Treatment Effect (required only if applicable) (Note G)
__ Not identified
__ Present
 + Specify percentage of viable tumor: ____%
__ Cannot be determined

+ Comment(s)
Surgical Pathology Cancer Case Summary

Protocol web posting date: October 2013

SOFT TISSUE: Resection

Select a single response unless otherwise indicated.

Procedure (Note H)
___ Intralesional resection
___ Marginal resection
___ Wide resection
___ Radical resection
___ Other (specify): ________________________
___ Not specified

Tumor Site
Specify (if known): ________________________
___ Not specified

Tumor Size
Greatest dimension: ___ cm
+ Additional dimensions: ___ x ___ cm
___ Cannot be determined (see “Comment”)

Macroscopic Extent of Tumor (select all that apply)
___ Superficial
 ___ Dermal
 ___ Subcutaneous-suprafascial
___ Deep
 ___ Fascial
 ___ Subfascial
 ___ Intramuscular
 ___ Mediastinal
 ___ Intra-abdominal
 ___ Retroperitoneal
 ___ Head and neck
 ___ Other (specify): ________________________
___ Cannot be determined

Histologic Type (World Health Organization [WHO] classification of soft tissue tumors) (Note C, Note I)
Specify: ________________________
___ Cannot be determined

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important, but are not yet validated or regularly used in patient management.
Mitotic Rate (Note D)
Specify: ___ /10 high-power fields (HPF)
(1 HPF x 400 = 0.1734 mm²; X40 objective; most proliferative area)

Necrosis (macroscopic or microscopic) (Note D)
___ Not identified
___ Present
 Extent: ___%

Histologic Grade (French Federation of Cancer Centers Sarcoma Group [FNCLCC]) (Note D)
___ Grade 1
___ Grade 2
___ Grade 3
___ Ungraded sarcoma
___ Cannot be determined

Margins (Note E)
___ Cannot be assessed
___ Margins negative for sarcoma
 Distance of sarcoma from closest margin: ___ cm
 Specify margin: _________________________
 Specify other close (less than 2.0 cm) margin(s): _________________________
___ Margin(s) positive for sarcoma
 Specify margin(s): _________________________

+ Lymph-Vascular Invasion (Note F)
+ ___ Not identified
+ ___ Present
+ ___ Indeterminate

Pathologic Staging (pTNM) (Note J)

TNM Descriptors (required only if applicable) (select all that apply)
___ m (multiple)
___ r (recurrent)
___ y (posttreatment)

Primary Tumor (pT)
___ pTX: Primary tumor cannot be assessed
___ pT0: No evidence of primary tumor
___ pT1a: Tumor 5 cm or less in greatest dimension, superficial tumor
___ pT1b: Tumor 5 cm or less in greatest dimension, deep tumor
___ pT2a: Tumor more than 5 cm in greatest dimension, superficial tumor
___ pT2b: Tumor more than 5 cm in greatest dimension, deep tumor

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important, but are not yet validated or regularly used in patient management.
Regional Lymph Nodes (pN) (Notes J and K)

- **pNX**: Regional lymph nodes cannot be assessed
- **pN0**: No regional lymph node metastasis
- **pN1**: Regional lymph node metastasis

- **No nodes submitted or found**

Number of Lymph Nodes Examined

Specify: ___

- Number cannot be determined (explain): ______________________

Number of Lymph Nodes Involved

Specify: ___

- Number cannot be determined (explain): ______________________

Distant Metastasis (pM) (Note J)

- **Not applicable**
- **pM1**: Distant metastasis
 + Specify site(s), if known: ______________________

+ Additional Pathologic Findings

+ Specify: ______________________

Ancillary Studies (required only if applicable)

Immunohistochemistry

Specify: ______________________

- Not performed

Cytogenetics

Specify: ______________________

- Not performed

Molecular Pathology

Specify: ______________________

- Not performed

Preresection Treatment (select all that apply)

- No therapy
- Chemotherapy performed
- Radiation therapy performed
- Therapy performed, type not specified
- Unknown

Treatment Effect (required only if applicable) (Note G)

- Not identified
- Present
 + Specify percentage of viable tumor (compared with pretreatment biopsy, if available): ____%
- Cannot be determined

+ Comment(s)
Explanatory Notes

A. Tissue Processing

Fixation
Tissue specimens from soft tissue tumors optimally are received fresh/unfixed because of the importance of ancillary studies, such as cytogenetics, which require fresh tissue.

Tissue Submission for Histologic Evaluation
One section per centimeter of maximum dimension is usually recommended, although fewer sections per centimeter are needed for very large tumors, especially if they are homogeneous. Tumors known to be high grade from a previous biopsy do not require as many sections as those that were previously diagnosed as low grade, as documentation of a high-grade component will change stage and prognosis in the latter case. Sections should be taken of grossly heterogeneous areas, and there is no need to submit more than 1 section of necrotic tumor (always with a transition to viable tumor). Occasionally, gross pathology can be misleading, and areas that appear to be grossly necrotic may actually be myxoid or edematous. When this happens, additional sections of these areas should be submitted for histologic examination. When estimates of gross necrosis exceed those of histologic necrosis, the greater percentage of necrosis should be recorded on the surgical pathology report. In general, most tumors require 12 sections or fewer, excluding margins. Tumors with greater areas of heterogeneity may need to be sampled more thoroughly.

Fresh tissue for special studies should be submitted at the time the specimen is received. Note that classification of many subtypes of sarcoma is not dependent upon special studies, such as cytogenetics or molecular genetics, but frozen tissue may be needed to enter patients into treatment protocols. Discretion should be used in triaging tissue from sarcomas. Adequate tissue should be submitted for conventional light microscopy before tissue has been taken for cytogenetics, electron microscopy, or molecular analysis.

Molecular Studies
It is important to snap freeze a small portion of tissue whenever possible. This tissue can be used for a variety of molecular analyses for tumor-specific molecular translocations (see Table 1) that help in classifying soft tissue tumors. In addition, treatment protocols increasingly require fresh tissue for correlative studies. Approximately 1 cm3 of fresh tissue (less is acceptable for small specimens, including core biopsies) should be cut into small, 0.2-cm fragments, reserving sufficient tissue for histologic examination. This frozen tissue should ideally be stored at -70°C and can be shipped on dry ice to facilities that perform molecular analysis.

<table>
<thead>
<tr>
<th>Histologic Type</th>
<th>Cytogenetic Events</th>
<th>Molecular Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar soft part sarcoma</td>
<td>t(X;17)(p11;q25)</td>
<td>TFE3-ASPL fusion</td>
</tr>
<tr>
<td>Aneurysmal bone cyst</td>
<td>t(16;17)q22;p13)</td>
<td>CDH11-USP6 fusion</td>
</tr>
<tr>
<td>Angiomatoid fibrous histiocytoma</td>
<td>t(12;16)(q13;p11)</td>
<td>FUS-ATF1 fusion</td>
</tr>
<tr>
<td></td>
<td>t(12;22)(q13;q12)</td>
<td>EWSR1-ATF1 fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;22)(q33;q12)</td>
<td>EWSR1-CREB1 fusion</td>
</tr>
<tr>
<td>Extraskeletal myxoid</td>
<td>t(9;22)(q22;q12)</td>
<td>EWS-NR4A3 fusion</td>
</tr>
<tr>
<td>chondrosarcoma</td>
<td>t(9;17)(q22;q11)</td>
<td>TAF2N-NR4A3 fusion</td>
</tr>
<tr>
<td></td>
<td>t(9;15)(q22;q21)</td>
<td>TCF12-NR4A3 fusion</td>
</tr>
<tr>
<td>Histologic Type</td>
<td>Cytogenetic Events</td>
<td>Molecular Events</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Clear cell sarcoma</td>
<td>t(12;22)(q13;q12)</td>
<td>EWSR1-ATF1 fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;22)(q33;q12)</td>
<td>EWSR1-CREB1 fusion</td>
</tr>
<tr>
<td>Desmoplastic small round cell tumor</td>
<td>t(11;22)(p13;q12)</td>
<td>EWSR1-WT1 fusion</td>
</tr>
<tr>
<td>Dermatofibrosarcoma protuberans</td>
<td>t(17;22)(q21;q13)</td>
<td>COL1A1-PDGFB fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COL1A1-PDGFB fusion</td>
</tr>
<tr>
<td>Ewing sarcoma/PNET</td>
<td>t(11;22)(q24;q12)</td>
<td>EWSR1-FLI1 fusion</td>
</tr>
<tr>
<td></td>
<td>t(21;22)(q12;q12)</td>
<td>EWSR1-ERG fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;22)(q33;q12)</td>
<td>EWSR1-FEV fusion</td>
</tr>
<tr>
<td></td>
<td>t(7;22)(p22;q12)</td>
<td>EWSR1-ETV1 fusion</td>
</tr>
<tr>
<td></td>
<td>t(17;22)(q12;q12)</td>
<td>EWSR1-E1AF fusion</td>
</tr>
<tr>
<td></td>
<td>inv(22)(q12q12)</td>
<td>EWSR1-ZSG fusion</td>
</tr>
<tr>
<td></td>
<td>t(16;21)(p11;q22)</td>
<td>FUS-ERG fusion</td>
</tr>
<tr>
<td>Fibrosarcoma, infantile</td>
<td>t(12;15)(p13;q26)</td>
<td>ETV6-NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Trisomies 8, 11, 17, and 20</td>
<td></td>
</tr>
<tr>
<td>Inflammatory myofibroblastic tumor</td>
<td>t(1;2)(q22;p23)</td>
<td>TPM3-ALK fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;19)(p23;p13)</td>
<td>TPM4-ALK fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;17)(p23;q23)</td>
<td>CLTC-ALK fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;2)(p23;q13)</td>
<td>RANB2-ALK fusion</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>Complex with frequent deletion of 1p</td>
<td></td>
</tr>
<tr>
<td>Liposarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-differentiated</td>
<td>Ring form of chromosome 12</td>
<td>Amplification of MDM2, CDK4, and others</td>
</tr>
<tr>
<td>Myxoid/Round cell</td>
<td>t(12;16)(q13;p11)</td>
<td>TLS-DDIT3 fusion</td>
</tr>
<tr>
<td>Pleomorphic</td>
<td>t(12;22)(q13;q12)</td>
<td>EWSR1-DDIT3 fusion</td>
</tr>
<tr>
<td>Low-grade fibromyxoid sarcoma</td>
<td>Complex</td>
<td></td>
</tr>
<tr>
<td>Malignant peripheral nerve sheath tumor</td>
<td>t(7;16)(q33;p11)</td>
<td>FUS-CREB3L2 fusion</td>
</tr>
<tr>
<td>Myxofibrosarcoma (myxoid MFH)</td>
<td>Ring form of chromosome 12</td>
<td></td>
</tr>
<tr>
<td>Rhabdoid tumor</td>
<td>Deletion of 22q</td>
<td>INI1 inactivation</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alveolar</td>
<td>t(2;13)(q35;q14)</td>
<td>PAX3-FOXO1A fusion</td>
</tr>
<tr>
<td></td>
<td>t(1;13)(p36;q14), double minutes</td>
<td>PAX7-FOXO1A fusion</td>
</tr>
<tr>
<td></td>
<td>t(2;2)(q35;p23)</td>
<td>PAX3-NCOA1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAX3-AFX fusion</td>
</tr>
<tr>
<td>Embryonal</td>
<td>Trisomies 2q, 8 and 20</td>
<td>Loss of heterozygosity at 11p15</td>
</tr>
<tr>
<td>Solitary fibrous tumor</td>
<td>Inversion chromosome 12</td>
<td>NAB2-STAT6</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monophasic</td>
<td>t(X;18)(p11;q11)</td>
<td>SS18-SSX1, SS18-SSX2 or SS18-SSX4 fusion</td>
</tr>
<tr>
<td>Biphasic</td>
<td>t(X;18)(p11;q11)</td>
<td>Predominantly SS18-SSX1 fusion</td>
</tr>
</tbody>
</table>

MFH, malignant fibrous histiocytoma; PNET, primitive neuroectodermal tumor.
B. Tumor Size
In cases of nonexcisional biopsy (eg, core biopsy, incisional biopsy) the tumor size cannot be
determined on pathologic grounds; therefore, imaging data (computed tomography [CT], magnetic
resonance imaging [MRI], etc) can be used instead.

C. Histologic Classification

Intraoperative Consultation
Histologic classification of soft tissue tumors is sufficiently complex that, in many cases, it is unreasonable
to expect a precise classification of these tumors based on an intraoperative consultation. A complete
understanding of the surgeon’s treatment algorithm is recommended before rendering a frozen section
diagnosis. Intraoperative consultation is useful in assessing if “lesional” tissue is present and in
constructing a differential diagnosis that can direct the proper triage of tissue for flow cytometry
(lymphoma), electron microscopy, and molecular studies/cytogenetics. Tissue triage optimally is
performed at the time of frozen section. In many cases, it is important that a portion of tissue be
submitted for ancillary studies, even from fine-needle aspiration (FNA) and core needle biopsy
specimens, after sufficient tissue has been submitted for histologic evaluation.

Tumor Classification from Biopsies
It is not always possible to classify soft tissue tumors precisely based on biopsy material, especially FNA
and core needle biopsy specimens. Although pathologists should make every attempt to classify lesions
in small biopsy specimens, on occasion stratification into very basic diagnostic categories, such as
lymphoma, carcinoma, melanoma, and sarcoma, is all that is possible. In some cases, precise
classification is only possible in open biopsies or resection specimens.

WHO Classification of Tumors
Classification of tumors should be made according to the World Health Organization (WHO)
classification of soft tissue tumors listed below. As part of the latest WHO classification of soft tissue
tumors, a recommendation was made to divide tumors into 4 categories: benign, intermediate (locally
aggressive), intermediate (rarely metastasizing), and malignant.

WHO Classification of Soft Tissue Tumors of Intermediate Malignant Potential and Malignant Soft Tissue
Tumors

Adipocytic Tumors
- Intermediate (locally aggressive)
 - Atypical lipomatous tumor/Well-differentiated liposarcoma
- Malignant
 - Dedifferentiated liposarcoma
 - Myxoid/round cell liposarcoma
 - Pleomorphic liposarcoma
 - Mixed-type liposarcoma
 - Liposarcoma, not otherwise specified

Fibroblastic / Myofibroblastic Tumors
- Intermediate (locally aggressive)
 - Superficial fibromatoses (palmar/plantar)
 - Desmoid-type fibromatoses
 - Lipofibromatosis
 - Giant cell fibroblastoma
- Intermediate (rarely metastasizing)
 - Dermatofibrosarcoma protuberans
Background Documentation

Other • Soft Tissue

SoftTissue 3.1.2.0

- Fibrosarcomatous dermatofibrosarcoma protuberans
- Pigmented dermatofibrosarcomatous protuberans
- Solitary fibrous tumor, malignant
- Inflammatory myofibroblastic tumor
- Low-grade myofibroblastic sarcoma
- Myxoinflammatory fibroblastic sarcoma/Atypical myxoinflammatory fibroblastic tumor
- Infantile fibrosarcoma

Malignant
- Adult fibrosarcoma
- Myxofibrosarcoma
- Low grade fibromyxoid sarcoma
- Sclerosing epithelioid fibrosarcoma

So-called Fibrohistiocytic Tumors
- Intermediate (rarely metastasizing)
 - Plexiform fibrohistiocytic tumor
 - Giant cell tumor of soft tissues

Smooth Muscle Tumors
- Malignant
 - Leiomyosarcoma

Pericytic (Perivascular) Tumors
- Malignant glomus tumor

Skeletal Muscle Tumors
- Malignant
 - Embryonal rhabdomyosarcoma (including botryoid, anaplastic)
 - Alveolar rhabdomyosarcoma (including solid, anaplastic)
 - Pleomorphic rhabdomyosarcoma
 - Spindle cell/sclerosing rhabdomyosarcoma

Vascular Tumors
- Intermediate (locally aggressive)
 - Kaposiform hemangioendothelioma
- Intermediate (rarely metastasizing)
 - Retiform hemangioendothelioma
 - Papillary intralymphatic angioendothelioma
 - Composite hemangioendothelioma
 - Pseudomyogenic (epithelioid sarcoma-like) hemangioendothelioma
 - Kaposi sarcoma

Malignant
- Epithelioid hemangioendothelioma
- Angiosarcoma of soft tissue

Tumors of Peripheral Nerves
- Malignant
 - Malignant peripheral nerve sheath tumor
 - Epithelioid malignant peripheral nerve sheath tumor
 - Malignant Triton tumor
 - Malignant granular cell tumor
 - Ectomesenchymoma
Chondro-osseous Tumors

Malignant
- Extraskeletal mesenchymal chondrosarcoma
- Extraskeletal osteosarcoma

Tumors of Uncertain Differentiation

Intermediate (locally aggressive)
- Hemosiderotic fibrolipomatous tumor

Intermediate (rarely metastasizing)
- Atypical fibroxanthoma
- Angiomatoid fibrous histiocytoma
- Ossifying fibromyxoid tumor
- Ossifying fibromyxoid tumor, malignant
- Mixed tumour
- Mixed tumor, NOS malignant
- Myoepithelioma
- Myoepithelial carcinoma
- Phosphaturic mesenchymal tumor, benign
- Phosphaturic mesenchymal tumor, malignant

Malignant
- Synovial sarcoma NOS
 - Synovial sarcoma, spindle cell
 - Synovial sarcoma, biphasic
- Epithelioid sarcoma
- Alveolar soft part sarcoma
- Clear cell sarcoma of soft tissue
- Extraskeletal myxoid chondrosarcoma
- Extraskeletal Ewing sarcoma
- Desmoplastic small round cell tumor
- Extra-renal rhabdoid tumor
- Malignant mesenchymoma
- Neoplasms with perivascular epithelioid cell differentiation (PEComa)
 - PEComa NOS, benign
 - PEComa NOS, malignant
- Intimal sarcoma

Undifferentiated/Unclassified Sarcomas

- Undifferentiated spindle cell sarcoma
- Undifferentiated pleomorphic sarcoma
- Undifferentiated round cell sarcoma
- Undifferentiated epithelioid sarcoma
- Undifferentiated sarcoma NOS

D. Grading

Unlike with other organ systems, the staging of soft tissue sarcomas is largely determined by grade. Whilst normograms assess multiple clinical and histological parameters to calculate the probability of recurrence for a given patient, there is, however, no generally agreed-upon scheme for grading soft tissue tumors. The most widely used soft tissue grading systems are the French Federation of Cancer Centers Sarcoma Group (FNCLCC) and National Cancer Institute (NCI) systems. Both systems have 3 grades and are based on mitotic activity, necrosis, and differentiation, and are highly correlated with...
prognosis. However, in addition to these criteria, the NCI system requires the quantification of cellularity and pleomorphism for certain subtypes of sarcomas, which is difficult to determine objectively. The FNCLCC system is easier to use in our opinion, and it may be slightly better in predicting prognosis than the NCI system. Other systems with 2 or 4 grades also have been used. The seventh edition of the AJCC Cancer Staging Manual adopted the FNCLCC grading system. The revision of the American Joint Committee on Cancer (AJCC) staging system incorporates a 3-tiered grading system; however, grade 1 and grades 2 to 3 (effectively low and high) are used for staging groups. Accurate grading requires an adequate sample of tissue, which is not always available from FNA or core needle biopsy or in tumors previously treated with radiation or chemotherapy. However, given the importance of grade in staging and treatment, efforts to separate sarcomas on the basis of needle biopsies into at least 2 tiers (ie, low and high grade) is encouraged. In many instances the histologic type of sarcoma will readily permit this distinction (ie, Ewing sarcoma, pleomorphic liposarcoma), whereas in less obvious instances the difficulty of assigning grade should be noted. In general, multiple needle core biopsies exhibiting a high-grade sarcoma can be regarded as high grade, since the probability of subsequent downgrading is remote, but limited core biopsies of low-grade sarcoma carry a risk of upgrading.

FNCLCC Grading

The FNCLCC grade is based on 3 parameters: differentiation, mitotic activity, and necrosis. Each of these parameters receives a score: differentiation (1 to 3), mitotic activity (1 to 3), and necrosis (0 to 2). The scores are summed to produce a grade.

- **Grade 1:** 2 or 3
- **Grade 2:** 4 or 5
- **Grade 3:** 6 to 8

Differentiation: Tumor differentiation is scored as follows (see Table 2).

- **Score 1:** Sarcomas closely resembling normal, adult mesenchymal tissue and potentially difficult to distinguish from the counterpart benign tumor (eg, well-differentiated liposarcoma, well-differentiated leiomyosarcoma)
- **Score 2:** Sarcomas for which histological typing is certain (eg, myxoid liposarcoma, myxofibrosarcoma)
- **Score 3:** Embryonal sarcomas and undifferentiated sarcomas, synovial sarcomas and sarcomas of doubtful tumor type

Tumor differentiation is the most problematic aspect of the FNCLCC system. Its use is subjective and does not include every subtype of sarcoma. Nevertheless, it is an integral part of the system, and an attempt should be made to assign a differentiation score.

Table 2. Tumor Differentiation Score According to Histologic Type in the Updated Version of the French Federation of Cancer Centers Sarcoma Group System

<table>
<thead>
<tr>
<th>Histologic Type</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-differentiated liposarcoma</td>
<td>1</td>
</tr>
<tr>
<td>Well-differentiated leiomyosarcoma</td>
<td>1</td>
</tr>
<tr>
<td>Malignant neurofibroma</td>
<td>1</td>
</tr>
<tr>
<td>Well-differentiated Fibrosarcoma</td>
<td>1</td>
</tr>
<tr>
<td>Myxoid liposarcoma</td>
<td>2</td>
</tr>
</tbody>
</table>
Histologic Type

<table>
<thead>
<tr>
<th>Histologic Type</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional leiomyosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>Conventional MPNST</td>
<td>2</td>
</tr>
<tr>
<td>Conventional fibrosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>Myxofibrosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>Myxoid chondrosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>Conventional angiosarcoma</td>
<td>2</td>
</tr>
<tr>
<td>High-grade myxoid (round cell) liposarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Pleomorphic liposarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Dedifferentiated liposarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Poorly differentiated/pleomorphic leiomyosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Poorly differentiated/epithelioid angiosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Poorly differentiated MPNST</td>
<td>3</td>
</tr>
<tr>
<td>Malignant Triton tumor</td>
<td>3</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Mesenchymal chondrosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Extraskeletal osteosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Extraskeletal Ewing sarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Malignant rhabdoid tumor</td>
<td>3</td>
</tr>
<tr>
<td>Clear cell sarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Epithelioid sarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Alveolar soft part sarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Undifferentiated (spindle cell and pleomorphic) sarcoma</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Grading of malignant peripheral nerve sheath tumor, embryonal and alveolar rhabdomyosarcoma, angiosarcoma, extraskeletal myxoid chondrosarcoma, alveolar soft part sarcoma, clear cell sarcoma, and epithelioid sarcoma is not recommended. Modified with permission from Coindre JM.7

Mitosis Count:
The count is made in the most mitotically active area in 10 successive high-power fields (HPF) (1 HPF X 400 = 0.1734 mm²) (use the X40 objective).

- **Score 1:** 0 to 9 mitoses per 10 HPF
- **Score 2:** 10 to 19 mitoses per 10 HPF
- **Score 3:** >19 mitoses per 10 HPF

Tumor Necrosis:
Determined on histologic sections.

- **Score 0:** No tumor necrosis
- **Score 1:** < 50% tumor necrosis
- **Score 2:** ≥50% tumor necrosis
TNM Grading
The seventh edition of the American Joint Committee on Cancer (AJCC) and International Union Against Cancer (UICC) staging system for soft tissue tumors recommends the FNCLCC 3-grade system but effectively collapses into high grade and low grade.\(^{10,11}\) This means that FNCLCC grade 2 tumors are considered “high grade” for the purposes of stage grouping.

E. Margins
It has been recommended that for all margins <2 cm, the distance of the tumor from the margin be reported in centimeters.\(^{12}\) However, there is a lack of agreement on this issue. We recommend specifying the location of all margins <2 cm and the distance of the closest margin that is <2 cm. Margins from soft tissue tumors should be taken as \textit{perpendicular} sections, if possible. If bones are present in the specimen and are not involved by tumor, or the tumor is >2 cm from the margin, the marrow can be scooped out and submitted as a margin.

F. Lymph-Vascular Invasion
Lymph-vascular invasion (LVI) indicates whether microscopic lymph-vascular invasion is identified. LVI includes lymphatic invasion, vascular invasion, or lymph-vascular invasion. By AJCC/UICC convention, LVI does not affect the T category indicating local extent of tumor unless specifically included in the definition of a T category.

G. Response to Chemotherapy/Radiation Therapy Effect
Although agreement has not been reached about measuring the effect of preoperative (neoadjuvant) chemotherapy/radiation therapy in soft tissue tumors, an attempt should be made to quantify these effects, especially in the research setting. Therapy response is expressed as a percentage of total tumor area that is viable. Nonliquefied tumor tissue from a cross-section through the longest axis of the tumor should be sampled. At least 1 section of necrotic tumor (always with a transition to viable tumor) should be sampled to verify the gross impression of necrosis. Nonsampled necrotic areas should be included in the estimate of necrosis and the percentage of tumor necrosis reported. The gross appearance can be misleading, and areas that appear grossly necrotic may actually be myxoid or edematous. Additional sections from these areas should be submitted for histologic examination. When estimates of gross necrosis exceed those of histologic necrosis, the greater percentage of necrosis should be recorded on the surgical pathology report.

H. Definition of Procedures
The following is a list of guidelines to be used in defining what type of procedure has been performed.

\begin{itemize}
\item \textbf{Intralesional Resection} \newline Leaving gross or microscopic tumor behind. Partial debulking or curettage are examples or when microscopic tumor is left at the margin unintentionally in an attempted marginal resection.
\item \textbf{Marginal Resection} \newline Removing the tumor and its pseudocapsule with a relatively small amount of adjacent tissue. There is no gross tumor at the margin; however, there is a high likelihood that microscopic tumor is present. If microscopic disease is identified at the margin, then it is an intralesional resection. Note that occasionally a surgeon will perform an “excisional” biopsy, which effectively accomplishes the same thing as a marginal resection.
\item \textbf{Wide Resection} \newline An intracompartmental resection. The tumor is removed with pseudocapsule and a cuff of normal tissue surrounding the neoplasm, but without the complete removal of an entire muscle group, compartment, or bone.
\end{itemize}
Radical Resection
The removal of an entire soft tissue compartment (for example, anterior compartment of the thigh, the quadriceps) or bone, or the excision of the adjacent muscle groups if the tumor is extracompartmental.

I. Histological Classification of Treated Lesions
Because of extensive treatment effects, such as necrosis, fibrosis, and chemotherapy-induced and radiation-induced pleomorphism, it may not be possible to classify some lesions that were either never biopsied or where the biopsy was insufficient for a precise diagnosis.

J. TNM and Stage Groupings
The TNM staging system for soft tissue tumors of the AJCC and UICC is recommended. The staging system applies to all soft tissue sarcomas except Kaposi sarcoma, gastrointestinal stromal tumors, fibromatosis (desmoid tumor), and infantile fibrosarcoma. In addition, sarcomas arising within the confines of the dura mater, including the brain, and sarcomas arising in parenchymatous organs and from hollow viscera are not optimally staged by this system.

Pathologic (pTNM) staging consists of the removal and pathologic evaluation of the primary tumor and clinical/radiologic evaluation for regional and distant metastases. In circumstances where it is not possible to obtain accurate measurements of the excised primary sarcoma specimen, it is acceptable to use radiologic assessment of tumor size to assign a pT category. In examining the primary tumor, the pathologist should subclassify the lesion and assign a histopathologic grade.

Definition of pT
Although size currently is designated within the TNM system as 5 cm or smaller versus larger than 5 cm, particular emphasis should be placed on providing size measurements. Size should be regarded as a continuous variable, with 5 cm as merely an arbitrary division that makes it possible to dichotomize patient populations.

Depth
Depth is evaluated relative to the investing fascia of the extremity and trunk. Superficial is defined as lack of any involvement of the superficial investing muscular fascia in extremity or trunk lesions. For staging, all retroperitoneal and visceral lesions are considered to be deep lesions.

Depth is also an independent variable and is defined as follows.

1. Superficial
 a. Tumor is located entirely in the subcutaneous tissues without any involvement of the muscular fascia. In these cases, pretreatment imaging studies demonstrate a subcutaneous tumor without involvement of muscle, and excisional biopsy pathology specimen demonstrate a tumor located within the subcutaneous tissues without invasion into fascia (adopted from the seventh edition of the AJCC Cancer Staging Manual).

2. Deep
 a. Tumor is located partly or completely within 1 or more muscle groups within the extremity. Deep tumors may extend through the muscular fascia into the subcutaneous tissues or even to the skin, but the critical criterion is location of any portion of the tumor within the muscular compartments of the extremity or invasion of the muscular fascia. In these cases, pretreatment imaging studies demonstrate a tumor located completely or partly within the muscular compartments of the extremity. Finally, on pathologic evaluation, any tumor that is superficial to the muscular fascia, but invades the fascia, is considered deep (adopted from the seventh edition of the AJCC Cancer Staging Manual).
b. All intraperitoneal visceral lesions, retroperitoneal lesions, intrathoracic lesions, and the majority of head and neck tumors are considered deep.

3. Depth is evaluated in relation to tumor size (T)
 a. Tumor 5 cm or less: T1a = superficial; T1b = deep.
 b. Tumor greater than 5 cm: T2a = superficial; T2b = deep.

Regional Lymph Nodes (pN)
Nodal involvement is rare in adult soft tissue sarcomas but, when present, has a very poor prognosis. N1 disease is classified as stage III. Patients whose nodal status is not determined to be positive for tumor, either clinically or pathologically, should be designated as N0.

Restaging of Recurrent Tumors
The same staging should be used when a patient requires restaging of sarcoma recurrence. Such reports should specify whether patients have primary lesions or lesions that were previously treated and have subsequently recurred. Reporting of possible etiologic factors, such as radiation exposure and inherited or genetic syndromes, is encouraged. Appropriate workup for recurrent sarcoma usually includes cross-sectional imaging (computed tomography [CT] scan or magnetic resonance imaging [MRI] scan) of the tumor, a CT scan of the chest, and a tissue biopsy to confirm diagnosis prior to initiation of therapy.

TNM Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and the “y” and “r” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

The “m” suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

The “y” prefix indicates those cases in which classification is performed during or following initial multimodality therapy (ie, neoadjuvant chemotherapy, radiation therapy, or both chemotherapy and radiation therapy). The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy (ie, before initiation of neoadjuvant therapy).

The “r” prefix indicates a recurrent tumor when staged after a documented disease-free interval, and is identified by the “r” prefix: rTNM.

T Category Considerations
Superficial tumor is located exclusively above the superficial fascia without invasion of the fascia; deep tumor is located either exclusively beneath the superficial fascia or superficial to the fascia with invasion of or through the fascia. Retroperitoneal, mediastinal, and pelvic sarcomas are classified as deep tumors.

N Category Considerations
Presence of positive nodes (N1) is considered stage III.

M Category Considerations
pMX and pM0 (no distant metastasis) are no longer case summary options as the use of pMX provides no meaningful information to the clinician or cancer registrar and at times may create confusion in tumor staging.
Stage Groupings

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>G</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Ta</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G1</td>
</tr>
<tr>
<td>IB</td>
<td>Ta</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G1</td>
</tr>
<tr>
<td>IIA</td>
<td>Ta</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G2</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G2</td>
</tr>
<tr>
<td>IIB</td>
<td>Ta</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G2</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G2</td>
</tr>
<tr>
<td>III</td>
<td>T2b</td>
<td>N0</td>
<td>X</td>
<td>M0</td>
<td>G3</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
<td>Any G</td>
<td>High or Low</td>
</tr>
</tbody>
</table>

Additional Descriptors

Residual Tumor (R)

Tumor remaining in a patient after therapy with curative intent (e.g., surgical resection for cure) is categorized by a system known as R classification, shown below.

- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

For the surgeon, the R classification may be useful to indicate the known or assumed status of the completeness of a surgical excision. For the pathologist, the R classification is relevant to the status of the margins of a surgical resection specimen. That is, tumor involving the resection margin on pathologic examination may be assumed to correspond to residual tumor in the patient and may be classified as macroscopic or microscopic according to the findings at the specimen margin(s).

K. Lymph Nodes

With the exception of epithelioid sarcoma and clear cell sarcoma of soft parts, regional lymph node metastasis is uncommon in adult soft tissue sarcomas. Nodes are not sampled routinely, and it usually is not necessary to exhaustively search for nodes. When present, regional lymph node metastasis has prognostic importance and should be reported. The seventh edition of the AJCC Cancer Manual recommends that N1 M0 disease to be regarded as stage III rather than stage IV disease.

References

