Every patient deserves the GOLD STANDARD ...
Disclaimer and Copyright Notice
On-site inspections are performed with the edition of the Checklists mailed to a facility at the completion of the application or reapplication process, not necessarily those currently posted on the Web site. The checklists undergo regular revision and a new edition may be published after the inspection materials are sent.

For questions about the use of the Checklists or Checklist interpretation, email accred@cap.org or call 800-323-4040 or 847-832-7000 (international customers, use country code 001).

The Checklists used for inspection by the College of American Pathologists' Accreditation Programs have been created by the CAP and are copyrighted works of the CAP. The CAP has authorized copying and use of the checklists by CAP inspectors in conducting laboratory inspections for the Commission on Laboratory Accreditation and by laboratories that are preparing for such inspections. Except as permitted by section 107 of the Copyright Act, 17 U.S.C. sec. 107, any other use of the Checklists constitutes infringement of the CAP's copyrights in the Checklists. The CAP will take appropriate legal action to protect these copyrights.

All Checklists are ©2014. College of American Pathologists. All rights reserved.
Microbiology Checklist

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY OF CHANGES</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>GENERAL MICROBIOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>PROFICIENCY TESTING</td>
<td>8</td>
</tr>
<tr>
<td>QUALITY MANAGEMENT AND QUALITY CONTROL</td>
<td>9</td>
</tr>
<tr>
<td>WAIVED TESTS</td>
<td>9</td>
</tr>
<tr>
<td>GENERAL ISSUES</td>
<td>10</td>
</tr>
<tr>
<td>SPECIMEN COLLECTION AND HANDLING</td>
<td>12</td>
</tr>
<tr>
<td>REAGENTS - GENERAL</td>
<td>14</td>
</tr>
<tr>
<td>REPORTING OF RESULTS</td>
<td>15</td>
</tr>
<tr>
<td>INSTRUMENTS AND EQUIPMENT</td>
<td>16</td>
</tr>
<tr>
<td>MATRIX-ASSISTED LASER DESORPTION IONIZATION TIME-OF-FLIGHT (MALDI-TOF)</td>
<td>17</td>
</tr>
<tr>
<td>MASS SPECTROMETRY</td>
<td>18</td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>18</td>
</tr>
<tr>
<td>BIOSAFETY</td>
<td>19</td>
</tr>
<tr>
<td>BACTERIOLOGY</td>
<td>21</td>
</tr>
<tr>
<td>MEDIA</td>
<td>21</td>
</tr>
<tr>
<td>STAINS</td>
<td>23</td>
</tr>
<tr>
<td>REAGENTS</td>
<td>24</td>
</tr>
<tr>
<td>ANTIMICROBIAL SUSCEPTIBILITY TESTING, QC REQUIREMENTS, AND RESULTS</td>
<td>26</td>
</tr>
<tr>
<td>REPORTING</td>
<td>26</td>
</tr>
<tr>
<td>PROCEDURES AND TESTS</td>
<td>30</td>
</tr>
<tr>
<td>RESPIRATORY SPECIMENS</td>
<td>31</td>
</tr>
<tr>
<td>URINE SPECIMENS</td>
<td>32</td>
</tr>
<tr>
<td>GENITAL SPECIMENS</td>
<td>32</td>
</tr>
<tr>
<td>STOOL SPECIMENS</td>
<td>33</td>
</tr>
<tr>
<td>CEREBROSPINAL & OTHER BODY FLUID SPECIMENS</td>
<td>34</td>
</tr>
<tr>
<td>BLOOD CULTURES</td>
<td>35</td>
</tr>
<tr>
<td>WOUND SPECIMENS</td>
<td>36</td>
</tr>
<tr>
<td>GAS CHROMATOGRAPHY (GC) FOR MICROBIAL IDENTIFICATION</td>
<td>37</td>
</tr>
<tr>
<td>LABORATORY SAFETY</td>
<td>40</td>
</tr>
<tr>
<td>MYCOBACTERIOLOGY</td>
<td>40</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>40</td>
</tr>
<tr>
<td>SPECIMEN HANDLING</td>
<td>41</td>
</tr>
<tr>
<td>REPORTING OF RESULTS</td>
<td>41</td>
</tr>
<tr>
<td>MEDIA</td>
<td>42</td>
</tr>
<tr>
<td>CONTROLS AND STANDARDS</td>
<td>43</td>
</tr>
<tr>
<td>PROCEDURES AND TESTS</td>
<td>44</td>
</tr>
<tr>
<td>RAPID METHODS</td>
<td>44</td>
</tr>
<tr>
<td>CONCENTRATION, INOCULATION, INCUBATION</td>
<td>45</td>
</tr>
<tr>
<td>CULTURES</td>
<td>46</td>
</tr>
<tr>
<td>DIFFERENTIAL BIOCHEMICAL PROCEDURES</td>
<td>46</td>
</tr>
<tr>
<td>High Performance Liquid Chromatography (HPLC) for Microbial Identification</td>
<td>47</td>
</tr>
<tr>
<td>LABORATORY SAFETY</td>
<td>50</td>
</tr>
<tr>
<td>MYCOLOGY</td>
<td>52</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>52</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>MOLECULAR MICROBIOLOGY</td>
<td>72</td>
</tr>
<tr>
<td>CONTROLS AND STANDARDS</td>
<td>52</td>
</tr>
<tr>
<td>PROCEDURES AND TESTS</td>
<td>54</td>
</tr>
<tr>
<td>LABORATORY SAFETY</td>
<td>56</td>
</tr>
<tr>
<td>PARASITOLOGY</td>
<td>58</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>58</td>
</tr>
<tr>
<td>REAGENTS</td>
<td>59</td>
</tr>
<tr>
<td>INSTRUMENTS AND EQUIPMENT</td>
<td>59</td>
</tr>
<tr>
<td>PROCEDURES AND TESTS</td>
<td>60</td>
</tr>
<tr>
<td>STOOLS FOR OVA AND PARASITES</td>
<td>60</td>
</tr>
<tr>
<td>BLOOD FILMS FOR MALARIA AND OTHER PARASITES</td>
<td>61</td>
</tr>
<tr>
<td>LABORATORY SAFETY</td>
<td>62</td>
</tr>
<tr>
<td>VIROLOGY</td>
<td>64</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>64</td>
</tr>
<tr>
<td>REAGENTS</td>
<td>64</td>
</tr>
<tr>
<td>CONTROLS AND STANDARDS</td>
<td>67</td>
</tr>
<tr>
<td>TESTS AND PROCEDURES</td>
<td>69</td>
</tr>
<tr>
<td>LABORATORY SAFETY</td>
<td>70</td>
</tr>
<tr>
<td>MOLECULAR MICROBIOLOGY</td>
<td>72</td>
</tr>
<tr>
<td>GENERAL REQUIREMENTS</td>
<td>73</td>
</tr>
<tr>
<td>QUALITY MANAGEMENT</td>
<td>73</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>74</td>
</tr>
<tr>
<td>PROCEDURE MANUAL</td>
<td>77</td>
</tr>
<tr>
<td>SPECIMEN HANDLING & PROCESSING</td>
<td>78</td>
</tr>
<tr>
<td>RESULTS REPORTING</td>
<td>79</td>
</tr>
<tr>
<td>REAGENTS</td>
<td>80</td>
</tr>
<tr>
<td>PROCEDURES & TESTS</td>
<td>81</td>
</tr>
<tr>
<td>INSTRUMENTS</td>
<td>82</td>
</tr>
<tr>
<td>LABORATORY SAFETY</td>
<td>82</td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>83</td>
</tr>
<tr>
<td>FDA CLEARED/APPROVED NON-AMPLIFICATION METHODS</td>
<td>83</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>84</td>
</tr>
<tr>
<td>ASSAY VERIFICATION</td>
<td>85</td>
</tr>
<tr>
<td>FDA CLEARED/APPROVED TARGET & SIGNAL AMPLIFICATION METHODS & SEQUENCING</td>
<td>86</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>86</td>
</tr>
<tr>
<td>SEQUENCING</td>
<td>89</td>
</tr>
<tr>
<td>ASSAY VALIDATION/VERIFICATION</td>
<td>90</td>
</tr>
<tr>
<td>LABORATORY-DEVELOPED OR MODIFIED FDA CLEARED / APPROVED TESTS</td>
<td>91</td>
</tr>
<tr>
<td>QUANTITATIVE ASSAYS: CALIBRATION & STANDARDS</td>
<td>91</td>
</tr>
<tr>
<td>QUALITY CONTROL</td>
<td>95</td>
</tr>
<tr>
<td>SEQUENCING</td>
<td>96</td>
</tr>
<tr>
<td>TEST PROCEDURES</td>
<td>97</td>
</tr>
<tr>
<td>ASSAY VALIDATION</td>
<td>98</td>
</tr>
<tr>
<td>PERSONNEL - LABORATORY-DEVELOPED TESTS</td>
<td>101</td>
</tr>
</tbody>
</table>
ON-LINE CHECKLIST AVAILABILITY

Participants of the CAP accreditation programs may download the checklists from the CAP Web site (www.cap.org) by logging into e-LAB Solutions. They are available in different checklist types and formatting options, including:

- Master — contains ALL of the requirements and instructions available in PDF, Word/XML or Excel formats
- Custom — customized based on the laboratory’s activity (test) menu; available in PDF, Word/XML or Excel formats
- Changes Only — contains only those requirements with significant changes since the previous checklist edition in a track changes format to show the differences; in PDF version only. Requirements that have been moved or merged appear in a table at the end of the file.

SUMMARY OF CHECKLIST EDITION CHANGES
Microbiology Checklist
04/21/2014 Edition

The information below includes a listing of checklist requirements with significant changes in the current edition and previous edition of this checklist. The list is separated into three categories:

1. New
2. Revised:
 - Modifications that may require a change in policy, procedure, or process for continued compliance;
 - A change to the Phase
3. Deleted/Moved/Merged:
 - Deleted
 - Moved — Relocation of a requirement into a different checklist (requirements that have been resequenced within the same checklist are not listed)
 - Merged — The combining of similar requirements

NOTE: The listing of requirements below is from the Master version of the checklist. The customized checklist version created for on-site inspections and self-evaluations may not list all of these requirements.

NEW Checklist Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC.11375</td>
<td>04/21/2014</td>
</tr>
<tr>
<td>MIC.16575</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.16595</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.16605</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.16615</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.16625</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.42025</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.63259</td>
<td>04/21/2014</td>
</tr>
<tr>
<td>MIC.64832</td>
<td>07/29/2013</td>
</tr>
</tbody>
</table>

REVISED Checklist Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC.10060</td>
<td>04/21/2014</td>
</tr>
<tr>
<td>MIC.11016</td>
<td>04/21/2014</td>
</tr>
<tr>
<td>MIC.11020</td>
<td>04/21/2014</td>
</tr>
<tr>
<td>MIC.14583</td>
<td>07/29/2013</td>
</tr>
<tr>
<td>MIC.14616</td>
<td>07/29/2013</td>
</tr>
</tbody>
</table>
MIC.15020 07/29/2013
MIC.18968 07/29/2013
MIC.21240 04/21/2014
MIC.21812 07/29/2013
MIC.21910 04/21/2014
MIC.21943 04/21/2014
MIC.22273 07/29/2013
MIC.22285 07/29/2013
MIC.22330 07/29/2013
MIC.22410 07/29/2013
MIC.22440 07/29/2013
MIC.22495 07/29/2013
MIC.22870 07/29/2013
MIC.32100 04/21/2014
MIC.32936 07/29/2013
MIC.51000 07/29/2013
MIC.52193 07/29/2013
MIC.52200 07/29/2013
MIC.52260 07/29/2013
MIC.53050 07/29/2013
MIC.61320 04/21/2014
MIC.61360 07/29/2013
MIC.63277 07/29/2013
MIC.63324 07/29/2013
MIC.63580 04/21/2014
MIC.64450 07/29/2013
MIC.64614 07/29/2013
MIC.64631 07/29/2013
MIC.64730 07/29/2013
MIC.64770 04/21/2014
MIC.64815 07/29/2013
MIC.64817 07/29/2013
MIC.64834 04/21/2014
MIC.64835 07/29/2013
MIC.64845 07/29/2013
MIC.64886 04/21/2014
MIC.64912 04/21/2014
MIC.64915 07/29/2013
MIC.64920 07/29/2013
MIC.64924 07/29/2013
MIC.64934 07/29/2013
MIC.64956 07/29/2013
MIC.64984 07/29/2013

DELETED/MOVED/MERGED Checklist Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC.10080</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.11027</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16000</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16100</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16200</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16250</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16290</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16300</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16500</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.16525</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>Code</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>MIC.16585</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.22890</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.33012</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.64550</td>
<td>04/20/2014</td>
</tr>
<tr>
<td>MIC.64874</td>
<td>07/28/2013</td>
</tr>
</tbody>
</table>
INTRODUCTION

This checklist is used in conjunction with the All Common and Laboratory General Checklists to inspect a microbiology laboratory section or department.

Certain requirements are different for waived versus nonwaived tests. Refer to the checklist headings and explanatory text to determine applicability based on test complexity. The current list of tests waived under CLIA may be found at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfClia/analyteswaived.cfm.

Note for non-US laboratories: Checklist requirements apply to all laboratories unless a specific disclaimer of exclusion is stated in the checklist.

GENERAL MICROBIOLOGY

Requirements in this section apply to ALL of the subsections in the microbiology laboratory (bacteriology, mycobacteriology, mycology, parasitology, molecular microbiology, and virology). When the microbiology department is inspected by a team, each member of the team must survey individual subsections for compliance with requirements in this General Microbiology section. The team leader is then responsible for completing this section at the conclusion of the inspection.

PROFICIENCY TESTING

Inspector Instructions:

- Are proficiency testing samples tested to the same level as clinical specimens?
- Select a representative clinical report of each culture type. Compare the extent of reporting for the relevant proficiency testing sample.

MIC.00350 PT Extent of Testing

Organisms in proficiency testing specimens are identified to the same level as those from patient samples.

NOTE: If the laboratory’s proficiency testing reports include incomplete identifications (e.g. “Gram positive cocci” or “Mycobacterium species, not tuberculosis”), it must document that this matches the information produced by the laboratory’s internal capabilities in patient reports. In other words, patient reports cannot be more specific than the identification level reporting in proficiency testing, unless the former contain more specific information provided by reference laboratories.
QUALITY MANAGEMENT AND QUALITY CONTROL

Inspector Instructions:

- Sampling of QC policies and procedures
- Sampling of QC records
- Sampling of employee records of morphologic observation correlation

- What do you do if controls are out of range?
- How do you ensure consistency among personnel performing microscopic morphology?

- Select several occurrences in which QC is out of range and follow documentation to determine if the steps taken follow the laboratory policy for corrective action

WAIVED TESTS

REVISED 04/21/2014

MIC.10060 Documented QC Results - Waived Tests
Phase II

The laboratory follows manufacturer instructions for quality control, and documents and reviews results for acceptability prior to reporting patient results.

NOTE: Quality control must be performed according to manufacturer instructions. Testing personnel or supervisory staff must review quality control data on days when controls are run prior to reporting patient results. The laboratory director or designee must review QC data at least monthly or more frequently if specified in the laboratory QC policy.

With respect to internal controls, acceptable control results must be documented, at a minimum, once per day of patient testing for each device.*

*Acceptable internal control results need not be documented, if (and only if) an unacceptable instrument control automatically locks the instrument and prevents release of patient results.

Evidence of Compliance:
✓ Written procedure consistent with manufacturer instructions for each waived test AND
✓ Records showing confirmation of acceptable QC results

MIC.10070 QC Corrective Action - Waived Tests
Phase II

There is documentation of corrective action when quality control results exceed the acceptable range.

NOTE: The remaining requirements in this checklist on quality control do not apply to waived tests.
GENERAL ISSUES

MIC.11015 QC Handling

Control specimens are tested in the same manner and by the same personnel as patient samples.

NOTE: QC specimens must be analyzed by personnel who routinely perform patient testing. This does not imply that each operator must perform QC daily, so long as each instrument and/or test system has QC performed at required frequencies, and all analysts participate in QC on a regular basis. To the extent possible, all steps of the testing process must be controlled, recognizing that preanalytic and postanalytic variables may differ from those encountered with patients.

Evidence of Compliance:
✓ Records reflecting that QC is run by the same personnel performing patient testing

REFERENCES

REVISED 04/21/2014

MIC.11016 Commercial Product - QC

When using a commercial product, QC is performed according to the manufacturer’s instructions or CAP Checklist requirements, whichever is more stringent.

NOTE: This includes, but is not limited to, antimicrobial susceptibility testing/identification (AST/ID) systems.

MIC.11017 QC Confirmation of Acceptability

Control results are reviewed for acceptability before reporting patient results.

Evidence of Compliance:
✓ Written policy/procedure stating that controls are reviewed and acceptable prior to reporting patient results AND
✓ Evidence of corrective action taken when QC results are not acceptable

REFERENCES

MIC.11018 QC Corrective Action

There is documentation of corrective action when control results exceed defined acceptability limits.

NOTE: Patient/client test results obtained in an analytically unacceptable test run or since the last acceptable test run must be re-evaluated to determine if there is a significant clinical difference in patient/client results. Re-evaluation may or may not include re-testing patient samples, depending on the circumstances.

Even if patient samples are no longer available, test results can be re-evaluated to search for evidence of an out-of-control condition that might have affected patient results.

REFERENCES
Monthly QC Review

Quality control data are reviewed and assessed at least monthly by the laboratory director or designee.

NOTE: The review of quality control data must be documented and include follow-up for outliers, trends, or omissions that were not previously addressed.

The QC data for tests performed less frequently than once per month should be reviewed when the tests are performed.

Evidence of Compliance:
- Records of QC review with documented follow-up for outliers, trends or omissions

Validation of Accuracy

If the laboratory performs test procedures for which calibration and control materials are not available, procedures have been established to validate the accuracy of patient test results.

REFERENCES

Morphologic Observation Assessment

The microbiology laboratory at least annually assesses morphologic observations among personnel performing Gram, trichrome and other organism stains, to ensure consistency.

NOTE: Suggested methods to accomplish this include:

1. Circulation of organisms with defined staining characteristics, and/or
2. Multi-headed microscopy, and/or
3. Use of photomicrographs with referee and participant identifications (e.g. former CAP microbiology Surveys or other photomicrographs from teaching collections)
4. Use of digital images

Evidence of Compliance:
- Written procedure defining the method and criteria used for evaluation of consistency **AND**
- Employee records documenting morphology assessment

REFERENCES

Taxonomy Changes

The laboratory incorporates taxonomic changes that potentially affect the choice of appropriate antimicrobials to report and/or the interpretative breakpoints to use.

NOTE: The genus and/or species names of microorganisms may change as new methods are applied to their taxonomy. This can impact the antimicrobials that should be reported for that organism. It may also change the breakpoints that should be used for interpreting susceptibility test results. For example, Actinobacillus actinomycetemcomitans was moved to the genus Haemophilus in 1985 and then to the new genus Aggregatibacter in 2006. The antimicrobials differ for Haemophilus species (CLSI M100, Table 2E) versus Aggregatibacter species (CLSI M45, Table 7). The laboratory should have a procedure ensuring that clinically relevant taxonomic changes are incorporated into reporting patient and proficiency testing results even when commercial identification systems have not been updated.
SPECIMEN COLLECTION AND HANDLING

Culture specimens are often collected by nurses or others outside the laboratory. An important aspect of quality control is the provision of adequate instructions to ensure proper collection and handling of specimens before they are received by the laboratory.

Inspector Instructions:

- Sampling of specimen collection and handling policies and procedures
- Sampling of requisitions for completeness
- Sampling of specimen rejection records/log

- Sampling of microbiology specimens (transport media, timely delivery, labeling)

- What is your course of action when you receive unacceptable microbiology specimens?

MIC.13100 Specimen Acceptability Criteria Phase II

There are criteria for establishing specimen acceptability.

NOTE: This could include important issues such as absence of gross external contamination, adequate specimen type/quantity, suitable preservation, prevention of dried swabs, and correct use of transport media when required.

Evidence of Compliance:
✓ Records of rejected specimens

MIC.13175 Viral Culture Specimens Phase I

Specimens for viral culture are collected appropriately and transported to the laboratory without delay.

NOTE: The laboratory should provide procedures for the appropriate collection, transport and storage of all specimen types tested in the laboratory. Specimens should be delivered to the laboratory promptly, ideally within 2-4 hrs of sample collection and preferably within 1 day of collection. This may not be possible for laboratories that refer samples to offsite reference laboratories for viral testing. In these instances samples should be stored and shipped under conditions that would preserve the integrity of the sample. Unless otherwise indicated, specimens should be refrigerated or frozen depending on the duration of storage prior to testing.
REFERENCES

MIC.13200 Requisitions Phase I

Requests for analysis include source of specimen, test or tests requested and, when appropriate, type of infection and/or organism expected.

REFERENCES

MIC.13250 Specimen Collection/Handling Phase II

There are documented instructions for microbiology specimen collection and handling that include all of the following.

1. Method for proper collection of culture specimens from different sources
2. Proper labeling of culture specimens
3. Use of transport media when necessary
4. Procedures for safe handling of specimens (tightly sealed containers, no external spillage)
5. Need for prompt delivery of specimens to ensure minimum delay and processing (e.g. CSF, wound cultures, anaerobes)
6. Method for preservation of specimens if processing is delayed (e.g. refrigeration of urines)

NOTE: Manufacturer's recommendations must be followed when there is a delay in delivery or processing of specimens for automated instruments (e.g. blood culture instruments).

REFERENCES

MIC.13275 Specimens for Molecular Amplification Phase II

The laboratory has procedures for the handling of specimens that will also be tested using molecular amplification methods.

NOTE: Special precautions must be taken to avoid sample cross-contamination that may not affect culture-based methods but may lead to false positive results when tested using molecular amplification methods. For example, proper procedures to prevent cross-contamination must be used when samples are processed in the same biohazard hood in which virus cultures are manipulated post-inoculation. Please refer to the Molecular Microbiology section of this checklist.

REFERENCES
REAGENTS - GENERAL

Inspector Instructions:

- Sampling of test procedures for QC
- Sampling of reagent QC records

Additional requirements are in the REAGENTS section of the All Common Checklist.

The following generic requirements apply to all subsections of the Microbiology Laboratory for nonwaived testing only.

REVISED 07/29/2013
MIC.14583 Direct Antigen Test QC
Phase II

For nonwaived direct antigen tests on patient specimens that DO include internal controls, a positive and negative external control are tested and documented with each new kit lot number or shipment, and as frequently as recommended by the manufacturer, or every 30 days (whichever is more frequent).

NOTE: Internal controls may be used for daily quality control, providing that the following requirements are met:

1. Prior to initiating patient testing, the internal controls are checked for acceptability against external controls. Acceptability studies must include daily comparison of external controls to built-in controls for at least 20 consecutive days when patient samples are tested. For panels or batteries, controls must be employed for each antigen sought. The requirement for 20 consecutive daily comparisons is effective for studies performed after 1/31/2012. Acceptable results are required before daily quality control can be limited to built-in controls. The laboratory director is responsible for determining criteria for acceptability. These records must be retained while an instrument/method is in service, and for two years afterwards.

2. A positive and negative external control (organism or antigen extract) are tested and documented with each new kit lot number or separate shipments of a given lot number.

3. Manufacturers’ recommendations are followed. “Flow” or “procedural” controls qualify as internal controls.

4. For tests classified as “high complexity” under CLIA, the system must be checked each day of use with a positive external control (organism or antigen).

5. External surrogate sample controls are run as frequently as recommended by the test manufacturer, or every 30 days, whichever is more frequent.

6. This requirement pertains to nonwaived tests with a protein, enzyme, or toxin which acts as an antigen and the assay contains an internal control. Examples include, but are not limited to: Group A Streptococcus antigen, C. difficile toxin, fecal lactoferrin and immunochemical occult blood tests.

For those Direct Antigen Tests that are done seasonally or intermittently, please review the All Common Checklist requirement COM.40100 for applicability and additional information.
Evidence of Compliance:
✓ Written QC procedures for each test consistent with the manufacturer’s instructions AND/OR records documenting in-house acceptability studies of internal control systems

REFERENCES

REVISED 07/29/2013
MIC.14616 Direct Antigen Test QC

For nonwaived direct antigen tests on patient specimens that do NOT include internal controls, a positive and negative control are tested and documented each day of patient testing.

NOTE: For panels or batteries, controls must be employed for each antigen sought in patient specimens. For each test system that requires an antigen extraction phase, the system must be checked with an appropriate positive control that will detect problems in the extraction process.

REFERENCES

REPORTING OF RESULTS

Inspector Instructions:

- Sampling of patient preliminary reports

MIC.15000 Preliminary Reports

When indicated, preliminary reports are promptly generated.

Evidence of Compliance:
✓ Written procedure(s) defining when preliminary results are issued

REVISED 07/29/2013
MIC.15020 Azoospermic Specimen Result Reporting

For azoospermic and post-vasectomy seminal fluid specimens, the laboratory clearly communicates the findings of the assay and either employs a concentrating technique on seminal fluid or includes a comment in the patient report indicating that a concentrating technique was not performed.

NOTE: Without a concentration technique, the presence of both motile and non-motile sperm may not be detected. The method for detection of motile and non-motile sperm and the laboratory findings must be clearly communicated on the patient report so that the clinician can interpret the results in context to the method performed. The decision on the method used and extent of testing to be performed should be made in consultation with the medical staff served.

The American Urological Association (AUA) Vasectomy Guideline recommends a careful evaluation of an uncentrifuged specimen, and does not recommend centrifugation of the specimen for further assessment. The AUA Guideline also recommends reporting both the presence and absence of sperm and presence or absence of sperm motility on the patient report. If no sperm are seen in the
The guideline recommends reporting that the presence of sperm is below the limit of detection.

Evidence of Compliance:
✓ Patient report with concentration findings or appropriate comment indicating that concentration was not performed

REFERENCES
1) Evaluation of the Azoospermic Male. *Fertil Steril.* 2008; 90 (S74-7)

INSTRUMENTS AND EQUIPMENT

The checklist requirements in this section should be used in conjunction with the requirements in the All Common Checklist relating to instruments and equipment.

Inspector Instructions:

- Sampling of pipette/diluter checks
- Microscope filters - used as indicated by manufacturer
- Incubators (adequate space, maintained)

MIC.16150 Pipettors and Diluters

Phase II

Pipettes, microtiter diluters or automatic dispensers that are used for quantitative dispensing of material are checked for accuracy and reproducibility at specified intervals, with results documented.

NOTE: This requirement is not applicable for precalibrated inoculation loops that are used in the direct plating of clinical specimens such as urine cultures.

Evidence of Compliance:
✓ Written procedure detailing method for checking the accuracy and reproducibility of pipettes

REFERENCES

MIC.16275 Microscopes

Phase I
Microscopes used for immunofluorescent testing contain the appropriate filter(s) recommended by the manufacturer.

NOTE: The use of filters not recommended by the manufacturer can lead to erroneous results.

REFERENCES

NEW 07/29/2013
MIC.16550 Adequate Incubators Phase I
There are sufficient, clean, and well-maintained incubators available at specified temperature ranges.

MATRIX-ASSISTED LASER DESORPTION IONIZATION TIME-OF-FLIGHT (MALDI-TOF) MASS SPECTROMETRY

This section applies to laboratories using MALDI-TOF systems to perform organism identification. Refer to the Test Method Validation section in the All Common Checklist for validation requirements pertinent to laboratory-developed tests.

NEW 07/29/2013
MIC.16575 Instrument Operation Phase II
Procedures are documented for operation and calibration of the mass spectrometer.

NEW 07/29/2013
MIC.16595 Mass Spectrometer Calibration Phase II
A calibration control is run each day of patient/client testing, with each change in target plate, or according to manufacturer’s recommendations and these records are maintained.

NOTE: Acceptable tolerance limits for calibration parameters must be defined, and records maintained.

Evidence of Compliance:
✓ Records of calibration

NEW 07/29/2013
MIC.16605 Mass Spectrometer Controls Phase II
Appropriate control organisms are tested on a daily basis.

NOTE: Appropriate controls would include at least one bacterium, with a representative yeast and mycobacterium also being run if these organisms are being tested for that day/routinely. For FDA-approved platforms, the organisms required by the manufacturer must be used. For laboratory developed tests, choice of control organisms is at the Laboratory Director’s discretion. Control organisms should be subjected to the same testing conditions throughout the testing procedure as patient specimens. An extraction control should be included if any of the organisms being tested are run with extraction. A blank control needs to be run with each new target being used to assess the cleanliness of the target (demonstrating a lack of peaks prior to testing).

Evidence of Compliance:
✓ Written procedure defining QC requirements AND
✓ QC records documented at defined frequency
NEW 07/29/2013

Mass Spectrometer Reagent Grade

- **Phase II**

 Reagents and solvents are of appropriate grade.

 NOTE: Only the manufacturer's specified grade of solvents are used for this procedure. This may be HPLC-grade or other reagent grades as indicated.

 Evidence of Compliance:
 - Reagent logs

NEW 07/29/2013

Mass Spectrometer Consumables

- **Phase II**

 Consumables are of appropriate manufacturing type to function as required.

 NOTE: For FDA-approved platforms, consumables utilized may be specified by the manufacturer. Deviation from the manufacturer's recommendation must be documented by an appropriate validation of the non-recommended consumables, if appropriate.

 Evidence of Compliance:
 - Consumable logs **AND**
 - Validation of alternative consumables not specified by the manufacturer

PERSONNEL

Inspector Instructions:

- Documentation of education and experience

Bench Testing Supervision

- **Phase II**

 The person(s) in charge of bench testing/section supervisor in microbiology has education in microbiology equivalent to an associate's degree (or beyond) in a chemical, physical or biological science or medical technology and at least 4 years experience (one of which is in microbiology) under a qualified section director.

 Evidence of Compliance:
 - Records of qualifications including degree or transcript, certification/registration, current license (if required) and work history in related field

Visual Color Discrimination

- **Phase I**

 Personnel working in microbiology are checked for visual color discrimination.

 NOTE: Testing is not required for personnel who do not perform laboratory tests requiring color discrimination. This does not mean that visually color-impaired technical personnel cannot be employed, only that they be tested, with job assignments and responsibilities evaluated accordingly.

 Evidence of Compliance:
 - Record of color discrimination testing **OR** functional assessment, if indicated

REFERENCES

BIOSAFETY

Items in this section apply to ALL areas of the microbiology laboratory. Additional items for specific subsections (bacteriology, mycobacteriology, mycology, parasitology, and virology) are found under the Laboratory Safety subsections for each of those areas.

Inspector Instructions:

- Sampling of biosafety policies and procedures
- Sampling of bench top decontamination logs
- Records of biological safety cabinet certification

- How would you recognize a potential agent of bioterrorism? What action would you take if you encountered a suspect organism?

REVISED 07/29/2013

Agents of Bioterrorism

The microbiology laboratory has policies and procedures for the recognition and safe handling of isolates that may be used as agents of bioterrorism.

NOTE: Microorganisms likely to be utilized as biological weapons include Bacillus anthracis (anthrax), Brucella species (brucellosis), Clostridium botulinum (botulism), Francisella tularensis (tularemia), Yersinia pestis (plague) and variola major (smallpox).

As part of an institution-wide plan to prepare and respond to a bioterrorism event, the microbiology laboratory should have policies and procedures for the recognition of isolates that may be used as agents of bioterrorism.

Safe handling includes such activities as handling organisms under a certified biological safety cabinet, and not subjecting the isolates to identification utilizing automated instruments.

REFERENCES

2) Gilchrist MJR. Laboratory Safety, Management, and Diagnosis of Biological Agents Associated with Bioterrorism
3) Robinson-Dunn B. The microbiology laboratory’s role in response to bioterrorism. Arch PatholLab Med. March 2002; 126

Bioterrorism Response Plan

The laboratory participates in the institution’s bioterrorism response plan.

Evidence of Compliance:

Organizational bioterrorism plan describing the role of the laboratory

REFERENCES

2) Gilchrist MJR. Laboratory Safety, Management, and Diagram of Biological Agents Associated with Bioterrorism
3) Robinson-Dunn B. The microbiology laboratory’s role in response to bioterrorism. Arch PatholLab Med. March 2002; 126
There are documented policies for handling spills of contaminated materials.

REFERENCES

There is documentation of daily decontamination of bench tops.

There are documented policies and procedures for the safe handling and processing of specimens.

NOTE: Suggested topics to be considered in the policies and procedures for the safe handling and processing of specimens include the need for tight sealing of containers, avoiding spills of hazardous materials, requirements for wearing gloves, the need for respirator protection, availability and use of vaccinations, and the potential hazards of sniffing plates.

REFERENCES

Policies and procedures have been developed to minimize the occupational risk of exposure to infectious agents handled in the microbiology laboratory, in accordance with current recommendations regarding the biosafety levels for working with different organisms.

NOTE: The laboratory director is responsible for the maintenance of precautions in the laboratory to minimize the risk of personnel infection. Precautions must be appropriate for the types of organisms tested and the nature of the studies performed.

Each level consists of combinations of equipment, procedures and techniques, and laboratory design that are appropriate for the type of laboratory and infectious agent handled.

REFERENCES

Engineering and work practice controls appropriate to the Biosafety level of the laboratory are defined and implemented.

NOTE: Each increasing BSL number (1 to 4) implies increased occupational risk from exposure to an agent or performance of a procedure, and therefore is associated with more stringent control and containment practices.

REFERENCES

A biological safety cabinet (BSC) or hood is available for handling specimens or organisms considered highly contagious by airborne routes.
Evidence of Compliance:
✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification

REFERENCES

MIC.20520 Biological Safety Cabinet Phase II

The biological safety cabinet (BSC) is certified at least annually to ensure that filters are functioning properly and that airflow rates meet specifications.

Evidence of Compliance:
✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification

BACTERIOLOGY

MEDIA

Inspector Instructions:

READ

• Sampling of media QC policies and procedures
• Sampling of media supplier records of QC
• Sampling of QC records for media prepared in-house or not exempt from M22-A3

OBSERVE

• Sampling of media (expiration date, condition, contamination)

ASK

• What is your QC process when receiving a new lot of media?

DISCOVER

• Follow a shipment of new media from receipt, examination and QC (if applicable). Determine if practice follows laboratory policy.

MIC.21200 Media Supplier Phase II

The laboratory has documentation that its media supplier carries out the quality assurance guidelines enumerated in CLSI/NCCLS Document M22-A3.

NOTE: The laboratory has the responsibility for ensuring that all media used, whether purchased or prepared by the laboratory, are sterile, able to support growth appropriately and are appropriately
reactive biochemically. This will ordinarily require that the laboratory maintain a stock of reference organisms and test the media before or concurrent with use. Explicit documentation of such testing is essential.

For prepared, purchased media, the laboratory must have explicit documentation that each lot of purchased medium has been tested for sterility, ability to support growth of appropriate organisms and biochemical reactivity at the time of preparation or concurrent with use in the laboratory. The recipient laboratory must have a copy of the CLSI/NCCLS document number M22-A3 (Quality assurance for commercially prepared microbiological culture media) as a reference source. The manufacturer or preparer must document to the user that their quality control activities meet the CLSI/NCCLS guidelines, or are otherwise equivalent. The laboratory director may wish to have a signed contractual arrangement with his/her selected manufacturer to cover all expected quality control and documentation thereof. For each lot, the preparer will certify that quality control performance was acceptable, and maintain a record of test results and the lot numbers for all media for at least 2 years. The user laboratory may record that fact in place of the more detailed documentation of media performance. The user must visually examine each shipment for breakage, contamination, appearance, or evidence of freezing or overheating. Transportation of media/reagents under unfavorable environmental conditions may adversely affect product performance.

The user laboratory must continue to test each lot of media except those listed as being exempt from such testing in the tables in M22-A3, using quality control methods that are used for media manufactured in-house. In addition, each shipment or lot, if more than one lot number is received per shipment of a commercial identification system must be tested for appropriate performance.

REFERENCES

MIC.21220 Media Visual Inspection Phase I

The laboratory has documentation that each shipment of purchased media is examined for breakage, contamination, appearance, and evidence of freezing or overheating.

REFERENCES

REVISED 04/21/2014

MIC.21240 Media QC - Purchased Phase II

The laboratory has documentation that an appropriate sample from each lot and shipment of each purchased medium that is not listed in M22-A3 as exempt from testing is checked for each of the following:

1. Ability to support growth (where applicable) by means of stock cultures or by parallel testing with previous batches
2. Biochemical reactivity, where appropriate
3. End user quality control must be performed on the following, regardless of exempt status:
 • Campylobacter agar;
 • Chocolate agar;
 • Media for the selective isolation of pathogenic Neisseria;
 • Other media not listed on Table 2 of M22-A3 (e.g. dermatophyte test medium);
 • Media used for the isolation of parasites, viruses, Mycoplasmas, Chlamydia;
 • Mueller-Hinton media used for antimicrobial susceptibility tests; or
 • Media commercially prepared and packaged as a unit or system consisting of two or more different substrates, primarily used for microbial identification.

REFERENCES
For microbiology media prepared in-house, there is documentation that an appropriate sample of each medium prepared by the laboratory is checked for each of the following:

1. Sterility (following introduction of additives after sterilization)
2. Ability to support growth (where applicable) by means of stock cultures or by parallel testing with previous batches
3. Biochemical reactivity (where appropriate)

Evidence of Compliance:
✓ Written procedure for testing media prepared in-house

All media are in visibly satisfactory condition (with expiration date, plates smooth, adequately hydrated, uncontaminated, appropriate color and thickness, tubed media not dried or loose from sides).

Quality control organisms are used to check stains, reagents and susceptibility test methods.

NOTE:
1. Quality control organisms may be ATCC strains or well characterized laboratory strains unless specified by the manufacturer
2. Quality control organisms are maintained in a manner to preserve their bioreactivity, phenotypic characteristics and integrity

REFERENCES

STAINS

Inspector Instructions:

- Sampling of staining policies and procedures
- Sampling of stain QC records/logs

The laboratory has protocols in place to use Gram stain results to provide a preliminary identification of organisms, evaluate specimen quality when appropriate, and to guide work-up of cultures.

NOTE: The laboratory should have guidelines for the interpretation of the Gram stain reaction of the organism, morphology of the organism, and the quantification of organisms and cells. The protocol should address correlation of direct Gram stain results with final culture results.
This does not mean that interpretation of the Gram stain morphology suggesting a specific organism identification (e.g. gram positive diplococcic morphologically suggestive of pneumococcus) is required.

Evidence of Compliance:
- Written procedure for Gram stain (laboratories may use the correlation of Gram stain results with the final culture results as a component of the QC program)

MIC.21540 Gram Stain QC

Phase II

Quality control of Gram stain reagents is performed for intended reactivity and recorded for each new batch of stains and at least weekly against known gram-positive and gram-negative quality control organisms.

NOTE: Personnel who perform Gram stains less frequently must run a gram-positive and gram-negative control each day of testing.

Evidence of Compliance:
- Written procedure for Gram stain QC

REFERENCES

MIC.21560 Non-Immunofluorescent Stain QC

Phase II

Quality control of all non-immunofluorescent, non-immunologic-based stains (other than Gram stains) is performed and recorded with a positive and negative quality control organism for intended reactivity each day of use, and for each new batch, lot number and shipment.

NOTE: Refer to MIC.51160 for requirement pertaining to parasitology permanent stains.

Evidence of Compliance:
- Written procedure for QC of non-immunofluorescent stains

MIC.21570 Fluorescent Stain QC

Phase II

Quality control of fluorescent stains is performed for positive and negative reactivity each time of use.

Evidence of Compliance:
- Written procedure QC of fluorescent stain

REFERENCES

REAGENTS

Inspector Instructions:
- Sampling of reagent QC policies and procedures
- Sampling of reagent QC records
- CO₂ monitoring procedure and CO₂ recording log
- Anaerobic incubation condition monitoring records
- Campylobacter incubation condition records
What is your QC process when receiving a new lot of identification system materials?

MIC.21624 Reagent QC

Positive and negative controls are tested and results recorded for each new batch, lot number, and shipment of reagents, disks/strips and stains.

NOTE: Reagents subject to this requirement include (but are not limited to) catalase, coagulase (including latex methods), oxidase and indole reagents; bacitracin, optochin, streptococcal grouping reagents, ONPG, X, V, and XV disks/strips. This does not include tests for antimicrobial susceptibility.

REFERENCES
1) Department of Health and Human Services, Centers for Medicare and Medicaid Services. Clinical laboratory improvement amendments of 1988; final rule. Fed Register. 2003(Jan 24): 3708 [42CFR493.1256 (e) (1) and (2)]

MIC.21626 Identification System QC

Appropriate positive and negative control organisms are tested and results recorded for each new lot and shipment of reagents used in bacterial identification systems.

NOTE: Streamlined QC may be performed, as specified by the manufacturer, for commercial microbial identifications systems (MIS) if the systems and streamlined QC protocols are used according to the manufacturer's instructions without modification. The laboratory may use additional QC organisms in addition to those required for the streamlined QC. In order to qualify for streamlined QC, the user must fulfill initial and ongoing requirements as defined by the manufacturer and CLSI document M50-A.

For user-developed identification systems, commercial systems for which a streamlined QC process has not been developed, or any commercial system whose use is altered in any way from the manufacturer's instructions, all biochemical tests in each new lot number and shipment must be evaluated with known positive and negative control organisms, to assure appropriate reactivity.

If streamlined QC is used, it is critical for laboratories to keep documentation of the test system verification and historical QC review as long as the streamlined QC is used, but in no case for less than two years.

Any test (e.g. oxidase test) required for interpretation of MIS results which is not part of the MIS cannot be included in MIS streamlined QC protocols. QC requirements for such tests, including the use of positive and negative controls for each new batch, lot number and shipment are given in MIC.21624.

Evidence of Compliance:
✓ Written procedure for QC on new lot numbers or shipments of reagents for each MIS using the conventional QC method (a positive and negative control for each substrate) OR a written procedure for streamlined QC AND
✓ Records of test system verification and historical QC review used to qualify for streamlined QC, if applicable

REFERENCES
Positive and negative controls are tested and results recorded for each new batch, lot number and shipment of antisera when prepared or opened and once every 6 months thereafter (e.g. Salmonella/Shigella antisera).

REFERENCES

REVISED 07/29/2013

MIC.21632 Beta-Lactamase QC

Positive and negative controls are tested and results recorded for beta-lactamase (other than Cefinase®) on each day of use.

NOTE: Beta lactamase tests using Cefinase® need be checked only with each batch, lot number and shipment.

REFERENCES

MIC.21812 Anaerobic Incubation Conditions QC

There is documentation that anaerobic incubation systems (e.g. jars, chambers, bags) are checked for adequate anaerobic conditions with methylene blue strips, fastidious anaerobic organisms or other appropriate procedures.

MIC.21813 CO₂ Incubator Levels

CO₂ incubators are checked daily for adequate CO₂ levels, with recording of results.

NOTE: Some organisms require CO₂ to grow sufficiently to form visible colonies. CO₂ monitoring is required in all CO₂ incubators, including those that adjust gas flow to maintain a set CO₂ level, to ensure that the environment is within an acceptable range for CO₂ content. It is acceptable to monitor and record CO₂ levels from digital readouts; however, the laboratory must verify that the readout is accurate (by initial calibration or Fyrite). The frequency of verification of the digital readout must be defined in the laboratory’s equipment quality control procedure and should be performed, at minimum, at the frequency recommended by the manufacturer.

MIC.21815 QC Campylobacter Incubation Conditions

Campylobacter incubation conditions are checked using QC organisms or other appropriate methods to ensure adequate environmental conditions to support growth of Campylobacter jejuni.

ANTIMICROBIAL SUSCEPTIBILITY TESTING, QC REQUIREMENTS, AND RESULTS REPORTING

Inspector Instructions:

- Sampling of susceptibility test, QC and reporting policies and procedures
- Sampling of susceptibility QC records
Susceptibility test set-up (standardized inoculum, pure culture)

How does your laboratory work with the pharmacy and medical staff to determine guidelines for reporting of antimicrobial agents?

Phase II

MIC.21820 Susceptibility Testing - Pure Cultures

Only pure cultures are used for performance of antimicrobial susceptibility testing (i.e. susceptibility testing is not performed on mixed cultures).

Evidence of Compliance:

✓ Written procedure describing the use of pure cultures for susceptibility testing, including the use of purity plates

MIC.21840 Susceptibility Test QC

Quality control is performed on each new lot of disks and media and each new lot of MIC panels before or concurrent with initial use with appropriate QC organisms.

Evidence of Compliance:

✓ Records of new lot susceptibility disk QC

REFERENCES

REVISED 04/21/2014

MIC.21910 Susceptibility Test QC Frequency

For antimicrobial susceptibility testing by either disk or dilution (MIC) methods, quality control organisms are tested with each new lot number or shipment of antimicrobials or media, and each day the test is performed thereafter.

NOTE: For antimicrobial susceptibility testing, quality control (QC) organisms must be tested with each new lot number or shipment of antimicrobials or media, and daily thereafter. However, the frequency of QC testing may be reduced to weekly (including the testing of new lots or batches of antimicrobials or media) if the laboratory can document satisfactory performance with daily QC tests as suggested by CLSI guidelines. For this purpose, satisfactory performance is defined as follows:

1. There is documentation that all QC organisms were tested for 20 or 30 consecutive test days, and
2. For each drug/microorganism combination, no more than 1 of 20 or 3 of the 30 values (zone diameter or MICs) may be outside the accepted QC ranges. These accepted QC
ranges may be those defined in the current CLSI guidelines or commercial device instructions or may be established by the laboratory

Or

1. There is documentation that all QC organisms were tested in triplicate (using separate inoculum suspensions) for 5 consecutive test days
2. For each drug/microorganism combination, no more than 1 of the 15 values (zone diameter or MICs) may be outside the accepted QC range
3. If 2 or 3 values are outside the accepted QC range during testing of 15 replicates, daily QC testing should be continued and performed in triplicate (using separate inoculum suspensions) for another 5 consecutive test days
4. For each drug/microorganism combination, no more than 4 of the 30 values (zone diameter or MICs) may be outside the accepted QC range

When a result is outside the accepted QC range during weekly QC testing, refer to the most recent CLSI guidelines for the required corrective action.

For frequency of QC for screening tests, refer to the most recent CLSI guidelines.

Evidence of Compliance:
✓ Records of susceptibility QC results documented at defined frequency and meeting defined acceptability criteria

REFERENCES

MIC.21930 Susceptibility Test Endpoint Determination

For antimicrobial susceptibility testing systems, there are documented criteria for measuring and determining the MIC endpoint or zone size.

NOTE: There must be stated criteria to determine the presence of an endpoint or zone size in the antimicrobial susceptibility testing system. The laboratory may use CLSI (NCCLS) criteria, but the use of other validated criteria is acceptable.

REFERENCES

MIC.21940 Standardized Inoculum

The inoculum used for antimicrobial susceptibility testing (i.e. inoculum size) is controlled using a turbidity standard or other acceptable method.
NOTE: Antibiotic susceptibility may be substantially affected by inoculum size.

Evidence of Compliance:
✓ Written procedure for standardizing susceptibility inoculum

REFERENCES

MIC.21943 Selection of Antimicrobial Agents to Report
Phase II

Guidelines are established to ensure that only antimicrobial agents appropriate for the organism and body site are routinely reported.

NOTES: The microbiology department should consult with the medical staff and pharmacy to develop a list of antimicrobial agents to be reported for specific organisms isolated from various body sites. These lists may be based on the CLSI recommendations provided in the M100 Table 1, which suggests those agents that might be reported routinely (Group A) and that might be reported selectively (Group B). Selective reporting should help improve the clinical relevance of antimicrobial reporting and help minimize overuse of broad-spectrum agents that might result in selection of multi-resistant organisms.

Laboratories should also only report those antimicrobial agents that are effective at the site from which the organism was isolated. Documentation of agreed upon protocols should be available in the laboratory, and these protocols should be reviewed with the stakeholders annually. The same protocols should be used in reporting proficiency testing susceptibility results, particularly for isolates from cerebrospinal fluid and urine.

Evidence of Compliance:
✓ Documentation of reporting of antimicrobial agents for different body sites AND
✓ Documentation that the antimicrobial reporting protocols have been reviewed on an annual basis AND
✓ Documentation that proficiency testing susceptibility reporting follows these protocols

REFERENCES

MIC.21944 Testing and Reporting Supplemental Antimicrobial Agents
Phase I

There are protocols for testing supplemental agents when needed on isolates resistant to routinely tested antimicrobial agents.

NOTE: The protocol may include submission of isolates to an outside reference laboratory if testing is not performed onsite.

Evidence of Compliance:
✓ Patient testing reports demonstrating additional testing or referral

MIC.21946 Cumulative Susceptibility Data
Phase I
For hospital based microbiology laboratories, cumulative antimicrobial susceptibility test data are maintained and reported to the medical staff at least yearly.

REFERENCES

MIC.21950 Inconsistent Antimicrobial Results

The procedure manual addresses unusual or inconsistent antimicrobial testing results.

NOTE: Acceptable results derived from testing QC strains does not guarantee accurate results with all patient isolates. Results from testing patient isolates must be reviewed and unusual or inconsistent results should be investigated to ensure accuracy. Expert software can identify unusual or inconsistent results that might be due to technical errors and to identify emerging resistance. Each laboratory should have a protocol such as that provided by CLSI for confirming unusual or inconsistent results. In some cases, it may be necessary to repeat susceptibility testing and/or identification procedures to confirm initial results. This may involve using alternative testing methods or sending the isolate to a reference lab. Some examples include:

1. *Escherichia coli* resistant to carbapenems
2. *Klebsiella spp.* susceptible to ampicillin
3. *Staphylococcus aureus* resistant to vancomycin

Evidence of Compliance:
✓ Records of investigation for unusual/inconsistent results

REFERENCES

PROCEDURES AND TESTS

Inspector Instructions:

- Sampling of bacteriology test procedures of different source types
- Sampling of patient worksheets/records
- Sampling of patient reports

- How does your laboratory evaluate culture findings?
 - Follow a specimen from evaluation of culture findings, recording of results and reporting. Determine if practice follows test procedures.

ROUTINE PROCEDURES: The following requirements define minimum standards for evaluation of routine bacterial cultures. The outlined procedure (media used and incubation conditions) permits recovery of bacteria expected in
the type of specimen used. This does not preclude the use of screening cultures (limited studies) and should not be construed to mean that all routine cultures require special media. Special media should be available if needed.

RESPIRATORY SPECIMENS

Routine procedures from acceptable respiratory cultures should allow the isolation of Streptococcus pneumoniae, and Hemophilus species.

MIC.22100 Sputum Gram Stain

A gram-stained smear is performed routinely on expectorated sputa to determine acceptability of a specimen for bacterial culture and as a guide for culture workup.

Evidence of Compliance:
- Policy defining acceptable specimens

REFERENCES

MIC.22110 Unacceptable Sputum Specimens

Specimens deemed unacceptable by Gram stain review are not cultured for routine bacteria (or cultured only by special request) and the health care provider or submitting laboratory is notified so another specimen can be collected without delay, if clinically indicated.

NOTE: It is suggested that the laboratory notify an appropriate caregiver about an inadequate specimen even when specimens are submitted from an outpatient setting, or submitted to a reference laboratory. Notification can be by phone or computer report. The laboratory may implement written agreements with particular providers or submitting laboratories defining protocols for handling sputum samples.

Evidence of Compliance:
- Records of specimen rejection such as rejection log or patient report

REFERENCES

MIC.22140 Group A Streptococcus Direct Antigen Detection

If group A Streptococcus direct antigen testing is performed, confirmatory testing is performed as appropriate on negative samples.

NOTE 1: Guidelines should be established for the use of cultures or other additional tests on specimens that test negative, as appropriate. These guidelines should take into account the sensitivity of the assay in use, the age and clinical presentation of the patient, and other factors.

NOTE 2: Direct antigen tests should be performed and reported in a timely fashion, since their principal advantage (compared to more sensitive methods such as culture) is rapid turn-around-time.

REFERENCES
1) www.cdc.gov/getsmart/campaign-materials/info-sheets/adult-acute-pharyngitis.html
2) www.cdc.gov/getsmart/campaign-materials/info-sheets/child-pharyngitis.html
URINE SPECIMENS

MIC.22200 Urine Colony Count Phase II

Quantitative cultures (colony counts) are performed.

NOTE: Urine cultures should include an estimate of CFU/volume.

Evidence of Compliance:

✓ Written procedure for colony counts

REFERENCES

MIC.22210 Urine Culture Procedure Phase II

The media and procedures used permit the isolation and identification of both gram-positive and gram-negative bacteria.

NOTE: This does not require the use of gram-positive selective media.

REFERENCES

GENITAL SPECIMENS

REVISED 07/29/2013

MIC.22273 Group B Streptococcus Screen Phase II

Group B streptococcus screens from pregnant women are collected and cultured in accordance with the current guidelines.

NOTE: Universal prenatal screening for vaginal and rectal Group B streptococcal (GBS) colonization of all pregnant women at 35-37 weeks gestation is recommended. The optimum specimen for this test is a vaginal/rectal swab and results may be compromised if only a vaginal swab is submitted. Detection of GBS in urine cultures in this population should also be addressed. Procedures for collecting and processing clinical specimens for GBS culture and performing susceptibility testing to clindamycin and erythromycin for highly penicillin allergic women are also included in the guidelines.

REFERENCES

MIC.22280 Bacterial Vaginosis Phase I

When Gram stains are performed to make the laboratory diagnosis of bacterial vaginosis, the smear is scored and interpreted according to published criteria.

NOTE: Culture should not be used for the diagnosis of bacterial vaginosis. Bacterial vaginosis (BV) is a syndrome involving a shift in the concentrations of aerobic and anaerobic flora of the genitourinary tract flora from a predominant presence of Lactobacillus sp. to that of a mixture of anaerobes, Gardnerella vaginalis and other gram-negative bacteria. Culturing for a particular organism, such as Gardnerella vaginalis, or any single organism or combination of organisms is not specific for the diagnosis of BV. Use of a scored Gram stain that demonstrates whether there has been a shift in the vaginal flora from predominantly gram-positive Lactobacillus to a gram-negative flora has been
shown to correlate well with the Amsel criteria for the diagnosis of BV. The primary reason for performing a Gram stain on vaginal secretions is to diagnose bacterial vaginosis.

REFERENCES
1) Nugent RP, Krohn MA, Hillier SL. 1991. JCM 29;297-301

REVISED 07/29/2013
MIC.22285 Genital Pathogens Phase II

Appropriate protocols are established to ensure the recovery of genital pathogens such as Neisseria gonorrhoeae.

STOOL SPECIMENS

REVISED 07/29/2013
MIC.22330 Clostridium difficile Phase II

The laboratory has protocols for the timely detection and reporting of C. difficile or its toxins.

REFERENCES
3) Peterson LR and Robicsek A. Does my Patient have Clostridium difficile Infection? Annals of Internal Medicine 2009; 151:176-178

MIC.22336 Stool Specimen Reporting Phase I

The final report for stool cultures submitted for routine bacterial pathogen examination lists the organisms for which the specimen was cultured (e.g. Salmonella, Shigella, Vibrio, etc.).

NOTE:
1. It is inappropriate to report “No enteric pathogens isolated.” The report should list the organisms whose presence was specifically sought (e.g. No Salmonella, Shigella, or Campylobacter, etc. isolated).
2. When indicated, tests to detect shiga toxin producing E. coli (STEC) should be available at a referral laboratory if not performed onsite.

REFERENCES

REVISED 07/29/2013
MIC.22410 Stool Culture Enrichment/Selective Media Phase I

Appropriate methods are used routinely to recover enteric pathogens.

NOTE: Enrichment media may be used in addition to selective plating media to enhance recovery of pathogens, which may be present at low numbers.

REVISED 07/29/2013
MIC.22440 Stool Specimen Number/Timing Phase I

The laboratory has guidelines for the number and/or timing of collection of stool specimens submitted for routine bacterial testing.
NOTE: The laboratory should consider developing guidelines with its clinicians for the number and/or timing of collection of stool specimens submitted for routine bacterial testing. Suggestions made by the authors of a 1996 CAP Q-Probes study (Valenstein et al) include:

1. Accept no more than 2 specimens/patient without prior consultation with an individual who can explain the limited yield provided by additional specimens
2. Do not accept specimens from inpatients after the third hospital day, without prior consultation
3. Test stool for Clostridium difficile toxin for all patients with clinically significant diarrhea and a history of antibiotic exposure. Consider C. difficile testing as an alternative to routine microbiologic studies for inpatients who have test requests for routine enteric pathogens
4. Positive test results for Clostridium difficile do not correlate well with disease in young children. Follow manufacturer guidelines for guidance on the testing of pediatric patients.

These recommendations are for diagnostic testing. Different guidelines may apply to tests ordered for follow-up.

REFERENCES
8) Wood M. When stool cultures from adult inpatients are not appropriate. Lancet. 2001;357:901-902

CEREBROSPINAL & OTHER BODY FLUID SPECIMENS

REVISED 07/29/2013

MIC.22495 Centrifugation of Body Fluids Phase I

If only plated media are used for sterile body fluids, fluid is centrifuged and the sediment used to inoculate media unless the entire specimen is plated.

NOTE: When inadequate volume is received, the report should note that the culture results may be compromised by the limited volume of specimen received. Equivalent methods are acceptable, if validated by the laboratory.

REFERENCES

MIC.22500 CSF Processing Phase II

CSF samples for culture are processed immediately on receipt.

NOTE: Bacterial meningitis is a critical condition that requires immediate attention. Samples must be processed upon receipt when meningitis is suspected. The laboratory may choose to handle surveillance cultures, e.g. involving neurosurgical implants, differently.

Evidence of Compliance:
✓ Policy and procedure for CSF processing AND
✓ Culture log or patient records
The procedure (media and incubation conditions) permits recovery of fastidious bacteria expected in this type of specimen (*N. meningitidis*, *S. pneumoniae*, *H. influenzae*).

If bacterial antigen-detection methods are used, back-up cultures are performed on both positive and negative CSF specimens.

NOTE: Total dependence on a bacterial antigen test for the diagnosis of bacterial meningitis does NOT meet accreditation requirements. Meningitis may be caused by bacteria not detected by the antigen tests. Thus, culture is essential for proper evaluation of bacterial meningitis, and must be performed on the patient specimen - if not performed onsite by the laboratory, the inspector must seek evidence that a culture has been performed in a referral laboratory.

Evidence of Compliance:
- Written procedure stating that CSF cultures are performed in conjunction with bacterial antigen tests OR procedure describing testing at another location AND
- Records of back-up CSF cultures performed on-site OR records indicating that cultures are performed at another location OR documentation that order for CSF bacterial antigen was blocked by the computer due to no order for a culture

REFERENCES

BLOOD CULTURES

The blood culture system in use is designed to recover both aerobic and, when indicated or if intended to be part of the routine procedure, anaerobic organisms.

NOTE: This criterion is not intended to imply that anaerobic cultures must be performed on all blood cultures if circumstances where anaerobic cultures are not indicated are specifically delineated (e.g. on neonates where volume is of concern).

REFERENCES

For non-automated systems, macroscopically negative aerobic blood cultures are stained and/or subcultured within 12-48 hours of incubation.

NOTE: Subcultures and/or stains need not be done on blood cultures performed by automated methods if bottles are monitored for at least 5 days.

Evidence of Compliance:
- Records of staining and/or subculture of macroscopically negative cultures
MIC.22620 Blood Culture Examination
Phase II

Blood cultures are examined (macroscopically if manual method) for evidence of growth at least twice daily for the first two days of incubation, then at least daily for the remainder of the incubation period.

NOTE: The time to detection of positive blood cultures, whether processed by manual or automated methods, depends on the schedule of inspection for evidence of growth. The means of the inspection may include visual examination, gram staining, subculturing, or electronic analysis by continuous monitoring instruments. Because most significant positive blood cultures may be detected within 48 hours of incubation, it is recommended that blood cultures be examined for evidence of growth at least two times on the first two days of incubation, then at least once daily through the remainder of the laboratory's routine incubation period.

Evidence of Compliance:
✓ Patient records/worksheet with result of examination for manual methods documented at defined frequency

REFERENCES

MIC.22630 Blood Culture Collection
Phase II

Sterile techniques for drawing and handling of blood cultures are defined, made available to individuals responsible for specimen collection and practiced.

NOTE: It is recommended that blood culture statistics, including number of contaminated cultures, be maintained and reviewed regularly by the laboratory director. The laboratory should establish a threshold for an acceptable rate of contamination. Tracking the contamination rate and providing feedback to phlebotomists or other persons drawing cultures has been shown to reduce contamination rates. Other measures to monitor include types of skin disinfection, volume of blood drawn, number of culture sets drawn, number of single cultures and line draws.

REFERENCES

MIC.22640 Blood Culture Volume
Phase I

The laboratory has a system for monitoring blood cultures for adequate volume and feeding back the results to blood collectors.
NOTE: Larger volumes of blood increase the yield of true positive cultures. In adults, optimally 20 mL of blood per culture set (2 bottles) should be collected for culture. The laboratory should periodically monitor collected blood volumes and provide feedback to clinical staff. Automated blood culture systems approved or cleared by the FDA may use smaller volumes per culture set and are acceptable.

Evidence of Compliance:
✓ Documentation of monitoring of volume at a defined frequency AND
✓ Documentation of feedback to the clinical staff

REFERENCES
1) Kellogg JA, et al. Justification and implementation of a policy requiring two blood cultures when one is ordered. Lab Med. 1994;25:323-330

WOUND SPECIMENS

MIC.22700 Wound/Antibiotic Cultures Phase II

Special procedures are defined to culture anaerobic organisms when indicated.

NOTE: The minimum standards for the evaluation of deep wound cultures require adequate procedures for the collection, recovery and identification of clinically relevant pathogens. This includes aerobic, facultatively anaerobic, and strictly anaerobic organisms, when indicated and when the submitted material is of sufficient quality to provide an interpretable result. Suggested media for anaerobes include an anaerobic blood agar plate, a medium that inhibits gram-positive and facultative gram-negative bacilli such as KV blood agar, a differential or selective medium such as BBF (Bacteroides bile-esculin), and a gram-positive selective medium (colistin-nalidixic acid blood agar or phenylethyl alcohol blood agar). Provisions for adequate anaerobic incubation, with monitoring of the anaerobic environment, must be available. If the laboratory is not equipped to handle anaerobic incubation, there must be a procedure to refer the specimen to a reference laboratory in an expeditious fashion using a satisfactory transport system.

MIC.22710 Direct Smear Gram Stain Phase I

Gram stains of direct smears are examined and results reported, when indicated.

NOTE: Gram stains are recommended to evaluate specimen quality and guide the work-up of the specimen. Examination of the smear may reveal quantity and morphotypes of the organisms present, acute inflammatory cells and squamous epithelial cells.
Inspector Instructions:

- Sampling of gas chromatography policies and procedures
- Sampling of QC records
- Sampling of reagents (grade)
- Chromatograph pattern controls

MIC.22790 GC Calibrators/Standards Phase II

Appropriate calibrators or standards are run with each analytic batch.

NOTE: For GC, a calibrator mixture must be run approximately every tenth analysis. The calibrator mixture must contain acids that cover the entire analysis spectrum, that is, C-10 through C-20, as well as any labile acids such as hydroxyl fatty acids.

Evidence of Compliance:
- ✓ Written procedure defining frequency and content of calibrator mixtures AND
- ✓ Records of calibration/calibration verification with each batch

MIC.22810 GC Controls Phase II

Appropriate controls are extracted and run through the entire procedure.

NOTE: For any GC system, positive controls must be run daily and include two organisms containing representative cellular fatty acids of all classes, i.e. saturated, unsaturated, iso, cyclopropane and hydroxyl acids. If one is using the MIDI (or related system), the similarity index must be >0.6 for aerobic bacteria and >0.3 for anaerobes. This represents a procedure control, as opposed to a calibrator mixture, which is an instrument control. For all GC assays that are used for identification of microbes, a reagent blank must be run daily to evaluate reagent contamination and carry-over.

Evidence of Compliance:
- ✓ Written procedure defining QC requirements AND
- ✓ QC records documenting controls documented at defined frequency

REFERENCES

1) Department of Health and Human Services, Centers for Medicare and Medicaid Services, Medicare, Medicaid and CLIA programs; CLIA fee collection; correction and final rule. Fed Register. 2003(Jan 24):5232 [42CFR493.1256]

MIC.22820 Chromatogram Controls Phase I

External chromatogram pattern controls are available.

NOTE: Patterns for known strains should be established. In addition, laboratories should have access to the standard method manuals containing comparable chromatographic patterns for comparison.

MIC.22830 GC Growth Conditions Phase II

The laboratory procedures define which growth media and conditions may be used for organisms in order to be analyzed by GC.
NOTE: Final results can be influenced by conditions of growth. For reliable results, standard conditions of analysis must be met, including growth media.

REFERENCES

MIC.22840 Chromatographic Method Validation
Phase II

The chromatographic method has been validated using known strains of bacteria, including strains expected to be encountered in routine clinical use.

Evidence of Compliance:
✓ Record of method validation with appropriate strains

REFERENCES

MIC.22850 Chromatographic Result Review
Phase II

There is a procedure for review of chromatographic results in conjunction with other laboratory data, prior to reporting results.

NOTE: Chromatography is only one tool for microbial identification. When results of analysis conflict with growth characteristics, pigmentation, or the results of biochemical or molecular testing, identification must be based on all the information available.

REFERENCES

MIC.22860 Chromatographic Analysis - Pure Isolates
Phase II

There are procedures to check the purity of cultures used as a source for chromatographic analysis.

NOTE: Results of chromatographic analysis may be unreliable if mixed cultures are tested. If chromatography is performed on an isolate from liquid culture and an interpretable chromatogram is obtained, it is not necessary to await the results of the purity check before reporting results, but a purity check must still be performed.

REVISED 07/29/2013

MIC.22870 GC Reagent Grade
Phase I

Reagents are of appropriate grade.

Evidence of Compliance:
✓ Reagent logs

MIC.22880 Instrument Operation
Phase II

Procedures are documented for operation and calibration.

NOTE: Basic principles of chromatographic analysis require continual monitoring of analysis conditions, including system calibration. System problems and corrective actions must be appropriately documented.
LABORATORY SAFETY

Inspector Instructions:

- Hazardous waste disposal policy
- How does your laboratory dispose of specimens and contaminated media?

NOTE TO THE INSPECTOR: The inspector should review relevant requirements from the Safety section of the Laboratory General checklist, to assure that the bacteriology laboratory is in compliance. Please elaborate upon the location and the details of each deficiency in the Inspector's Summation Report.

The following requirement pertains specifically to the bacteriology laboratory.

MIC.23200 Hazardous Waste Disposal Phase II

Microbiology specimen residuals and contaminated media are disposed of in a manner to minimize hazards to all personnel handling the material.

NOTE: Sterilization or decontamination within the microbiology section before disposal is preferred. If such material is transported before treatment, it must be placed into a leak-resistant rigid container, and appropriately labeled.

Evidence of Compliance:

- Written procedure for the handling and disposal of microbiology waste

REFERENCES

MYCOBACTERIOLOGY

QUALITY CONTROL

Inspector Instructions:

- Mycobacteriology specimen collection, transport and handling procedure
- Mycobacteriology reporting policy
- Sampling of patient test reports
- Sampling of mycobacteriology media/stain/reagent QC policies and procedures
- Sampling of mycobacteriology QC records
• Sampling of media (expiration date, condition, contamination)

• How do you determine when QC is unacceptable and when corrective actions are needed?
• What is your policy for performing AFB stains on week-ends and holidays?

• Select several occurrences in which QC is out of range and follow documentation to determine if the steps taken follow the laboratory policy for corrective action

SPECIMEN HANDLING

MIC.31100 Specimen Collection/Transport Phase I

Specimens for mycobacterial culture are collected appropriately and transported to the laboratory without delay.

NOTE: The laboratory should recommend collecting 3 sputum specimens for acid-fast smears and culture in patients with clinical and chest x-ray findings compatible with tuberculosis. These three samples should be collected at 8-24 hour intervals (24 hours when possible) and should include at least one first morning specimen. Specimens must be delivered to the laboratory promptly; specimens that cannot be processed within one hour of the time of collection should be refrigerated during transport to and storage in the laboratory prior to processing. This will decrease overgrowth with contaminating organisms likely to be present.

Laboratories are encouraged to process acid-fast specimens in their laboratory or obtain results from referral laboratories as soon as possible so that smear results can be available within 24 hours of collection (see MIC.31200 below).

Evidence of Compliance:
✓ Written procedure describing specimen collection and handling requirements

REFERENCES
1) Toman K. How many bacilli are present in a sputum specimen found positive by smear microscopy [Chapter 4]. In: Frieden T, ed. Toman's tuberculosis case detection, treatment, and monitoring: questions and answers. 2nd ed. Geneva, Switzerland: World Health Organization; 2004:11-3

REPORTING OF RESULTS

MIC.31200 Acid Fast Stain Results Phase I

When clinically indicated, results of acid-fast stains are reported within 24 hours of specimen receipt by the testing laboratory.
Evidence of Compliance:
✓ Written procedure defining turnaround time for reporting acid-fast stain results

REFERENCES

MIC.31220 Susceptibility Test Results Phase I

Susceptibility test results for *M. tuberculosis* are available in a timely manner.

NOTE: The rapid recognition of drug-resistant organisms is essential to the control of multidrug-resistant tuberculosis. For isolates of *M. tuberculosis* complex, the CDC and Prevention Laboratory work group recommends that laboratories use methods that may allow susceptibility test results to be available within 28 days of specimen receipt. From a CAP accreditation perspective, 28 days is a goal, not a requirement.

REFERENCES

MEDIA

MIC.31400 Media QC Phase II

An appropriate sample of each medium and additive prepared by the laboratory is checked for all of the following elements.

1. Sterility (if additives are introduced after initial sterilization)
2. Ability to support growth (when applicable) by means of stock cultures or by parallel testing with previous batches
3. Biochemical reactivity (where appropriate)

NOTE: This checklist requirement does not apply to commercially prepared additives that are reconstituted when added to mycobacterial media.

Evidence of Compliance:
✓ Records of media QC for laboratory-prepared media and additives

REFERENCES

MIC.31460 Media Visual Examination Phase II

All media are in satisfactory condition (adequately hydrated, tubed media not dried or loose from sides).
CONTROLS AND STANDARDS

MIC.31630 QC Confirmation of Acceptability Phase II

The results of controls are reviewed for acceptability before reporting patient results.

Evidence of Compliance:
✓ Written policy/procedure stating that controls are reviewed and acceptable prior to reporting patient results AND
✓ Evidence of corrective action taken when QC results are not acceptable

REFERENCES

MIC.31635 QC Corrective Action Phase II

There is documentation of corrective action when control results exceed the acceptability limits.

NOTE: Patient test results obtained in an analytically unacceptable test run or since the last acceptable test run must be re-evaluated to determine if there is a significant clinical difference in patient/client results. Re-evaluation may or may not include retesting samples, depending on the circumstances.

REFERENCES

MIC.31640 AFB Stain QC Phase II

AFB stains are checked each day of use with appropriate positive and negative controls, and results documented.

REFERENCES

MIC.31650 Fluorescent Stain QC Phase II

Fluorescent stains are checked with positive and negative controls each time of use and results documented.

REFERENCES

MIC.31660 NAP Test QC Phase I

A known strain of *M. tuberculosis* is tested whenever the NAP (p-nitro-alpha-acetylamino-beta-hydroxypropiophenone) test is performed.

MIC.31670 Nucleic Acid Probe QC Phase II

If nucleic acid probes are used for identification of mycobacteria grown in culture, appropriate positive and negative controls are tested on each day of use.

Evidence of Compliance:
✓ Records of nucleic acid probe QC documented at defined frequency
REFERENCES

MIC.31680 Susceptibility QC

Phase II

If the laboratory performs susceptibility testing of *M. tuberculosis*, a control strain sensitive to all antimycobacterial agents is run each week of patient testing, and with each new batch/lot number of media and antimicrobial agents.

Evidence of Compliance:
✓ Records of routine and new lot QC results documented at defined frequency

REFERENCES

PROCEDURES AND TESTS

Inspector Instructions:

- Sampling of mycobacteriology test procedures/identification schemes
- Sampling of mycobacteriology QC policies and procedures
- Sampling of patient worksheets/records
- Sampling of mycobacteriology QC records
- Sampling of HPLC policies and procedures
- Sampling of HPLC QC records
- New HPLC column verification

- Chromatograph pattern controls
- Sampling of reagents (storage, grade, solvent purity)

- How do you determine when QC is unacceptable and when corrective actions are needed?
- What specimens are concentrated before AFB examination and culture?

- Follow a positive patient worksheet from receipt and processing to identification and reporting

RAPID METHODS

The College of American Pathologists encourages laboratories in areas of the country where the incidence of tuberculosis has increased over the past several years and laboratories in other parts of the country that have experienced an increased rate of recovery of mycobacteria to utilize the most rapid and reliable methods available for detection and identification of mycobacteria, especially *M. tuberculosis*, and the most rapid and reliable methods available for susceptibility testing of isolates of *M. tuberculosis.*
REVISED 04/21/2014

Phase II

Fluorochrome Stain

Fluorochrome staining is performed on mycobacterial smears prepared from primary specimens, either in the laboratory or by the reference laboratory.

NOTE: Such smears are easier to read than those stained with a conventional carbol-fuchsin based stain. Fluorescing organisms stand out prominently against the background of the smear, and the smears can be examined at a lower power than conventionally-stained smears, so that a larger amount of material can be examined in a given period of time. As with the interpretation of Ziehl-Neelsen- and Kinyoun-stained smears, expertise is needed for interpretation of smears stained with a fluorescent stain; not everything that fluoresces in such a stain is necessarily a mycobacterium. Particularly when only a few organism-like structures are seen, it is important to pay careful attention to their morphology before interpreting them as mycobacteria.

This requirement does not apply to laboratories outside of the United States where local regulations prevent fluorochrome staining.

Evidence of Compliance:

✓ Written procedure for including fluorochrome staining on primary specimens for mycobacterial culture OR written policy for referral of specimens to a reference laboratory for fluorochrome staining AND

✓ Patient reports/worksheets with fluorochrome stain results OR reference laboratory reports with results

REFERENCES

Phase I

Rapid Method

Nucleic acid probes, chromatography, the NAP test, or other rapid method (e.g. nucleic acid amplification or sequencing) is employed for identification of mycobacterial isolates.

Evidence of Compliance:

✓ Written procedure defining method(s) in use for identification of mycobacterial isolates

REFERENCES

Phase II

AFB Concentration

Certain specimens (e.g. sputum) are concentrated before AFB smear examination and culture.

Evidence of Compliance:

✓ Documentation of specimens requiring concentration

Phase I

Specimen Inoculation

Specimens (other than blood) are routinely inoculated on media that support optimal growth of the majority of clinically relevant mycobacterial species.
NOTE: The use of two types of media (for specimens other than blood), including one liquid medium (when possible) or a comparable culture method, is recommended for optimal isolation of mycobacteria.

REFERENCES

CULTURES

Laboratories providing complete identification must provide a sufficient variety of differential tests to accurately identify and differentiate the different types of mycobacteria, including temperature growth requirements and photoreactivity studies. Laboratories not providing complete identification are encouraged to at least provide photoreactivity studies.

MIC.32320 Incubation Temperature

Mycobacterial cultures are maintained at 35-37°C.

NOTE: The optimal incubation temperature for most mycobacterial specimens is 35 to 37°C. Exceptions to this include specimens obtained from skin or soft tissue suspected to contain M. marinum (incubate at 30-32°C) or M. xenopi (incubate at 42°C). These specimens should be held at 35–37°C in addition to the lower or higher temperature.

Evidence of Compliance:
✓ Temperature records

DIFFERENTIAL BIOCHEMICAL PROCEDURES

MIC.32420 Differential Biochemical Test

Differential biochemical tests are appropriate for the extent and manner of mycobacterial identification.

NOTE: The number and types of biochemical tests needed depend upon (a) the extent to which mycobacteria are identified (e.g. "Mycobacterium kansasii" or "photochromogen"), (b) the particular species which a laboratory attempts to identify (e.g. does it attempt to identify Mycobacterium terrae complex, or the species and subspecies of the Mycobacterium chelonae-Mycobacterium fortuitum complex), and (c) the degree to which biochemical testing is ancillary to other methods such as nucleic acid probes and HPLC. Useful biochemical tests include, but are not limited to, arylsulfatase, 68°C catalase, semiquantitative catalase, iron uptake, MacConkey agar, 5% NaCl, niacin accumulation, nitrate reductase, Tween 80 hydrolysis, and urease. These tests are particularly useful for the following identifications and discriminations:
Utility Test

<table>
<thead>
<tr>
<th>TEST</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arylsulfatase</td>
<td>Helps distinguish pathogenic from non-pathogenic rapid growers; also useful for M. marinum, M. szulgai, M. xenopi, M. triviale.</td>
</tr>
<tr>
<td>68°C catalase</td>
<td>Helpful for identification of M. tuberculosis</td>
</tr>
<tr>
<td>Semiquantitative catalase</td>
<td>Helpful in certain circumstances. M. tuberculosis complex, MAC, M. xenopi, and a few other species produce <45 mm of bubbles.</td>
</tr>
<tr>
<td>Iron uptake</td>
<td>Helps distinguish M. chelonae from M. fortuitum.</td>
</tr>
<tr>
<td>MacConkey agar</td>
<td>Helps with identification of rapid growers.</td>
</tr>
<tr>
<td>5% NaCl</td>
<td>Helps with identification of rapid growers and M. triviale.</td>
</tr>
<tr>
<td>Niacin accumulation</td>
<td>Helps with identification of M. tuberculosis, M. simiae, some strains of M. bovis.</td>
</tr>
<tr>
<td>Nitrate reductase</td>
<td>Helpful in identifying many mycobacterial species.</td>
</tr>
<tr>
<td>Tween 80 hydrolysis</td>
<td>Helps distinguish some usually pathogenic from some usually non-pathogenic mycobacterial species.</td>
</tr>
<tr>
<td>Urease</td>
<td>Helpful in identifying many mycobacterial species.</td>
</tr>
</tbody>
</table>

Evidence of Compliance:

- Written procedure detailing tests performed and identification scheme appropriate for the extent of testing

REFERENCES

Biochemical Test QC

Phase II

All biochemical tests employed are checked each day of use with appropriate positive and negative controls and results recorded.

REFERENCES

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) FOR MICROBIAL IDENTIFICATION

Phase II

Appropriate calibrators or standards are run with each analytic batch.

NOTE: Either calibration standards or organisms of known identity must be run with each analytic batch, and criteria must exist for acceptance of runs based on mobility of internal standards, ability to identify significant peaks, baseline noise, peak symmetry of internal standards, detection of low-quantity peaks, and similar criteria.

Evidence of Compliance:

- Written procedure defining calibrators/standards appropriate for the test system used AND
- Records of calibration/calibration verification with each batch

REFERENCES

MIC.32556 HPLC Controls

Appropriate controls are extracted and run through the entire procedure.

NOTE: Control organisms must be extracted and carried through the entire procedure with each run or batch. Appropriate positive (e.g. mycobacterial) and negative controls (organisms such as *Candida* from which no mycolic acids are expected) must be included with each run.

Evidence of Compliance:

- ✓ Written procedure defining QC requirements AND
- ✓ QC records documented at defined frequency

REFERENCES

MIC.32594 Chromatogram Controls

External chromatogram pattern controls are available.

NOTE: Patterns for known strains should be established in those laboratories using HPLC. In addition laboratories should have access to the standard method manuals containing comparable chromatographic patterns for comparison.

REFERENCES

MIC.32632 Column Verification

New columns are verified for performance before use.

NOTE: Column verification must include assessment of flow, consistency, and carryover. If the HPLC-method interpretive software uses a peak-naming table, it must be calibrated with each change of column. Generally the basic performance of new columns is certified by the manufacturer. HPLC analysis requires columns be equilibrated with about 10 column volumes of solvent followed with a blank run to test pressure and solvent flow.

Evidence of Compliance:

- ✓ Written procedure for column verification AND
- ✓ Records of column verification

REFERENCES

MIC.32670 Column/Detector Monitoring

The performance of the column and detector are monitored on each day of use.

NOTE: Unextracted standard organisms and extracted calibrators or controls, typically containing a range of mycolic acids (or other appropriate targets) of known relative retention times, may be analyzed to monitor critical aspects of HPLC performance. Appropriate criteria for evaluating such parameters as retention time of specific standards, relative retention compounds time, separation of closely eluting peaks of interest, detection of known low-quantity peaks, column pressure, chromatography quality and detector response should be established and monitored. Column temperatures and pump pressures are monitored with each run to ensure they met specified criteria for analysis. The column and detector operations are monitored with a blank run prior to use and during batch runs. Positive and negative control samples supplement the blank run when samples are analyzed.

Evidence of Compliance:

- ✓ Records for column and detector monitoring documented at defined frequency
REFERENCES

MIC.32708 Carryover Detection

There is a procedure for the detection and evaluation of potential carryover.

NOTE: No matter what type of injection is used, the procedure must address criteria for the evaluation of potential carryover from a preceding elevated (high concentration) sample to the following sample, either periodically, or in each analytical batch analysis.

Evidence of Compliance:

✓ Records of reassessment of samples with potential carryover

REFERENCES
2) Society of Forensic Toxicologists/American Academy of Forensic Sciences. *Forensic Toxicology Laboratory Guidelines.* 2002; 8.2.8:13

MIC.32746 HPLC Growth Media

The laboratory procedures define which growth media may be used for organisms to be analyzed by HPLC.

NOTE: Final results can be influenced by conditions of growth. For reliable results, standard conditions of analysis must be met, including growth media.

REFERENCES

MIC.32784 Peak Verification

There is a procedure for verifying calibration of the peak-naming table, if used.

NOTE: In order to insure that peaks are correctly identified by interpretive software, the table must be verified at least annually with standard materials or organisms with known characteristics.

REFERENCES

MIC.32822 HPLC Method Validation

The HPLC method has been validated using known strains of bacteria, including strains expected to be encountered in routine clinical use.

Evidence of Compliance:

✓ Record of method validation with appropriate strains

REFERENCES

MIC.32860 HPLC Result Review

There is a procedure for review of HPLC results in conjunction with other laboratory data prior to reporting results.

NOTE: HPLC is only one tool for microbial identification. When results of HPLC analysis conflict with growth characteristics, pigmentation, or the results of biochemical or molecular testing, identification decisions must be based on all the information available.
REFERENCES

REVISED 07/29/2013

MIC.32968 HPLC Analysis - Pure Isolates Phase II

There are procedures to check the purity of cultures used as a source for HPLC analysis.

NOTE: Results of HPLC analysis may be unreliable if mixed cultures are tested. If HPLC is performed on an isolate from liquid culture and an interpretable chromatogram is obtained, it is not necessary to await the results of the purity check before reporting results, but a purity check must still be performed.

REFERENCES

REVISED 07/29/2013

MIC.32936 HPLC Reagent Grade Phase I

Reagents and solvents are of appropriate grade, and solvent purity is assessed when needed.

NOTE: Only HPLC grade solvents are recommended for this procedure. Degradation begins once ultra-pure solvents are opened. Degradation can be slowed by storing solvents in tightly capped, amber bottles in the dark. Solvent purity verification is suggested when a degradation-related problem is suspected.

Evidence of Compliance:
✓ Reagent logs

REFERENCES

MIC.32974 Instrument Operation Phase II

Procedures are documented for operation and calibration.

NOTE: Basic principles of HPLC analysis require continual monitoring of analysis conditions, including standard operating procedures, and system calibration. System problems and corrective actions must be appropriately documented.

REFERENCES

LABORATORY SAFETY

NOTE TO THE INSPECTOR: The inspector should review relevant requirements from the Safety section of the Laboratory General checklist, to assure that the mycobacteriology laboratory is in compliance. Please elaborate upon the location and the details of each deficiency in the Inspector's Summation Report.

The following requirements pertain specifically to the mycobacteriology laboratory.
Inspector Instructions:

READ

- Mycobacteriology specimen collection, transport and handling procedure
- Records of biological safety cabinet certification

OBSERVE

- Patient mycobacteriology specimens (sealed, leak proof containers)
- Sealed, safety centrifuge carriers

MIC.33050 Specimen Collection
Phase II

All specimens for mycobacterial culture are collected and/or received in sealed leak-proof containers.

MIC.33100 Centrifuge Safety
Phase II

In centrifuging specimens, sealed screw-capped tubes are enclosed in sealed safety centrifuge carriers (i.e. a double closure system) used to minimize aerosol hazards.

REFERENCES

MIC.33300 Biological Safety Cabinet
Phase II

The biological safety cabinet meets minimum requirements for mycobacterial work.

NOTE: Exhaust air from a class I or class II biological safety cabinet must be filtered through high efficiency particulate air (HEPA) filters. Air from Class I and IIB cabinets is hard-ducted to the outside. Air from Class IIA cabinets may be recirculated within the laboratory if the cabinet is tested and certified at least every 12 months. It may be exhausted through a dedicated stack that protects against backflow of air from adverse weather conditions or through the building exhaust air system in a manner (e.g. thimble connection) that avoids any interference with the air balance of the biological safety cabinet or building exhaust system.

Evidence of Compliance:

✓ Written procedure defining the types of safety cabinets, filtration systems and exhaust systems used AND
✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification AND
✓ Records of HEPA filters used for filtration of all BSC classes AND
✓ Records of exhaust mechanism OR recirculation, if appropriate

REFERENCES

MYCOLOGY

QUALITY CONTROL

Inspector Instructions:

- Sampling of mycology media/stain/reagent QC policies and procedures
- Sampling of mycology QC records

- How do you determine when QC is unacceptable and when corrective actions are needed?

- Select several occurrences in which QC is out of range and follow documentation to determine if the steps taken follow the laboratory policy for corrective action

MEDIA

Phase IIMedia QC

An appropriate sample of each medium prepared by the laboratory or purchased but not excluded from testing in NCCLS M22-A3 is checked for each of the following.

1. Sterility (following introduction of additives after sterilization)
2. Ability to support growth and biochemical reactivity (where applicable) by means of stock cultures or by parallel testing with previous batches

Evidence of Compliance:
✓ Records of media QC for laboratory-prepared or non-exempt purchased media

REFERENCES

CONTROLS AND STANDARDS

Good laboratory practice includes checking all media either at the time of receipt or concurrently with use. This applies to purchased media as well as media prepared by the laboratory.
MIC.41250 Reference Organisms

Reference cultures are used to check stains and reagents at appropriate intervals.

REFERENCES

MIC.41270 Nucleic Acid Probe/Exo-antigen QC

If nucleic acid probes or exo-antigen tests are used for identification of fungi isolated from culture, appropriate positive and negative controls are tested on each day of use.

Evidence of Compliance:
✓ Written procedure defining QC for nucleic acid probe or exo-antigen tests AND
✓ Records of nucleic acid probe or exo-antigen QC documented at defined frequency

MIC.41330 QC Confirmation of Acceptability

The results of controls are reviewed for acceptability before reporting patient results.

Evidence of Compliance:
✓ Written policy/procedure stating that controls are reviewed and acceptable prior to reporting patient results AND
✓ Evidence of corrective action taken when QC results are not acceptable

REFERENCES

MIC.41345 QC Corrective Action

There is documentation of corrective action when quality control results exceed the acceptability limits.

NOTE: Patient test results obtained in an analytically unacceptable test run or since the last acceptable test run must be re-evaluated to determine if there is a significant clinical difference in patient results. Re-evaluation may or may not include retesting samples, depending on the circumstances.

REFERENCES

MIC.41370 Direct Smear Stain QC

Direct patient specimen stains (e.g. acid fast, PAS, Giemsa, Gomori's methenamine silver, India ink) are checked with positive and negative controls on each day of patient sample testing.

NOTE: For certain stains such as GMS and Giemsa, the slide itself serves as the negative control. Controls for KOH preparations are not required.

Evidence of Compliance:
✓ Records of stain QC documented at defined frequency

REFERENCES
2) Department of Health and Human Services, Centers for Medicare and Medicaid Services. Clinical laboratory improvement amendments of 1988; final rule. Fed Register. 2003(Jan 24):7166 [42CFR493.1256(e)(2); 493.1256(e)(3); 493.1273(a)]

MIC.41390 Fluorescent Stain QC

...
Fluorescent stains (such as calcofluor white) are checked with positive and negative controls each time of use and results documented.

REFERENCES

PROCEDURES AND TESTS

The intent of this series of requirements is to ensure the use of an appropriate variety of media and growth conditions to isolate the significant pathogens with minimal interference from contaminants.

Inspector Instructions:

- Sampling of mycology test procedures/identification schemes
- Sampling of patient worksheets/records

- What tests or procedures are used to identify dimorphic fungi? Filamentous fungi?

- Follow a mycology patient worksheet from receipt and processing to culture evaluation, identification and reporting

NEW 07/29/2013

MIC.42025 Cryptococcal Antigen

If cryptococcal antigen-detection methods are used on CSF, back-up cultures are performed on positive CSF specimens submitted for diagnosis.

NOTE: It is important to recover the causative organism for precise identification (C. neoformans vs. C. gattii) and potentially susceptibility testing. Back-up cultures of follow-up specimens used for trending the antigen titer are not required. If culture is not performed onsite by the laboratory, the laboratory must show evidence that it has been performed in a referral laboratory.

Evidence of Compliance:
 ✓ Written procedure stating that CSF cultures are performed in conjunction with initial cryptococcal antigen tests OR procedure describing testing at another location AND
 ✓ Records of back-up CSF cultures performed on-site OR records indicating that cultures are performed at another location

MIC.42050 Selective Media

Suitable selective media are used for the growth and isolation of dermatophytes and/or systemic fungi.

Evidence of Compliance:
 ✓ Written procedure for mycology culture defining the media used for growth and isolation
Selective Media

Media with antimicrobial agents are used to suppress the growth of contaminants.

NOTE: Antimicrobial agents may inhibit some yeasts and the yeast phase of dimorphic organisms. Both types of media (with and without antimicrobials) should be available and used when indicated.

Evidence of Compliance:
✓ Written procedure for mycology culture defining the use of media to suppress contaminants

REFERENCES

Incubation Temperature

Incubation temperatures for the growth and isolation of dermatophytes and systemic fungi are defined and followed under culture conditions.

Evidence of Compliance:
✓ Temperature records

If cultures are incubated at room temperatures, actual ambient temperature (22-26 °C) is checked daily to determine if proper growth conditions are being maintained.

Procedures for the differentiation and identification of fungi (differential tests) are adequate for the needs of the laboratory.

NOTE: Laboratories offering full identification must have sufficient procedures to do so. Smaller laboratories with limited services should have an arrangement with an approved reference laboratory for back-up and complete identification of mycology specimens.

Evidence of Compliance:
✓ Written procedure detailing tests performed and identification scheme appropriate for the extent of testing

REFERENCES

Differential Tests include biochemical tests (e.g. urease, carbohydrate assimilation and/or fermentation).

Differential tests include slide cultures (when appropriate).

Differential tests include nutritional studies for dermatophytes when identification is carried to the species level.
The identification of dimorphic fungal isolates is confirmed by exo-antigen, molecular, yeast-mold conversion or tissue phase detection tests.

NOTE: Exo-antigen tests, DNA probes, or DNA sequencing are recommended.

LABORATORY SAFETY

NOTE TO THE INSPECTOR: The inspector should review relevant requirements from the Safety section of the Laboratory General checklist, to assure that the mycology laboratory is in compliance. Please elaborate upon the location and the details of each deficiency in the Inspector's Summation Report.

The following requirements pertain specifically to the mycology laboratory.

Inspector Instructions:

- Sampling of mycology safety policies and procedures
- Records of biological safety cabinet certification
- Safe work practices (taping of culture plates, procedures performed under BSC)

REFERENCES

The use of slide culture techniques is limited, where possible, to work with low virulence organisms; or if used for dimorphic fungi, special safety precautions are defined and rigidly adhered to.

MIC.43200 Safety Precautions

When preparing teased preparations or "scotch" tape preps, mycelia are always submerged in some liquid medium (such as lactophenol cotton blue).

MIC.43250 Biological Safety Cabinet

A biological safety cabinet (BSC) or hood is available for handling specimens or organisms considered to be highly contagious by airborne routes.

Evidence of Compliance:

✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification

REFERENCES

MIC.43300 Biological Safety Cabinet

The biological safety cabinet (BSC) is certified annually to ensure that filters are functioning properly and that airflow rates meet specifications.

Evidence of Compliance:

✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification

MIC.43350 Biological Safety Cabinet

The BSC meets minimum requirements for mycologic work.

NOTE: Exhaust air from a class I or class II BSC must be filtered through HEPA filters. Air from Class I and IIB is hard ducted to the outside. Air from Class IIA cabinets may be recirculated within the laboratory if the cabinet is tested and certified at least every 12 months. It may be exhausted through a dedicated stack that protects against backflow of air from adverse weather conditions or through the building exhaust air system in a manner (e.g. thimble connection) that avoids any interference with the air balance of the BSC or building exhaust system.

Evidence of Compliance:

✓ Written procedure defining the types of safety cabinets, filtration systems and exhaust systems used AND
✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification AND
✓ Records of HEPA filters used for filtration of all BSC classes AND
✓ Records of exhaust mechanism OR recirculation, if appropriate

REFERENCES
PARASITOLOGY

QUALITY CONTROL

Inspector Instructions:

| READ | • Sampling of parasitology stain/reagent QC policies and procedures
• Sampling of parasitology QC records
• Ocular micrometer calibration procedure and records |
| --- | --- |
| OBSERVE | • Reference materials (permanent mounts, photomicrographs or atlas available)
• Zinc sulfate solution (tightly-stoppered)
• Ocular micrometer |
| ASK | • How do you determine when QC is unacceptable and when corrective actions are needed?
• What resources do you have available to assist in identification of parasites? |
| DISCOVER | • Select several occurrences in which QC is out of range and follow documentation to determine if the steps taken follow the laboratory policy for corrective action |

MIC.45900 QC Confirmation of Acceptability

The results of controls are reviewed for acceptability before reporting patient results.

Evidence of Compliance:

- Written policy/procedure stating that controls are reviewed and acceptable prior to reporting patient results **AND**
- Evidence of corrective action taken when QC results are not acceptable

REFERENCES

MIC.48450 QC Corrective Action

There is documentation of corrective action when control results exceed the acceptability limits.

NOTE: Patient test results obtained in an analytically unacceptable test run or since the last acceptable test run must be re-evaluated to determine if there is a significant clinical difference in patient/client results. Re-evaluation may or may not include retesting samples, depending on the circumstances.

REFERENCES

Phase I

Reference Materials

Reference materials, such as permanent mounts, photomicrographs, NCCLS documents M15-A and M28-A2, or printed atlases are available at the work bench to assist with identifications.

REFERENCES

Phase II

REAGENTS

MIC.51120 Reagents

If zinc sulfate is used, the solution is stored in a tightly-stoppered bottle and checked for specific gravity (1.18 for fresh specimens and 1.20 for formalin-fixed specimens) with a hydrometer whose scale is large enough to differentiate the two values.

Evidence of Compliance:
✓ Records for specific gravity checks on the zinc sulfate solution

MIC.51160 Permanent Stain QC

All permanent parasitology stains are checked for intended reactivity with controls or reference materials at least monthly (or with each test if performed less frequently than every month).

NOTE: PVA fixative solutions thoroughly mixed with fresh fecal material that has been seeded with buffy coat leukocytes usually provides reliable controls for permanent stains.

Evidence of Compliance:
✓ Records of permanent stain QC documented at defined frequency

REFERENCES

MIC.51170 Special Stain QC

Stains that are used to detect specific parasites (e.g. acid fast, fluorescent) are checked with appropriate control organisms each time that stain is used.

Evidence of Compliance:
✓ Records of special stain QC each time of use

INSTRUMENTS AND EQUIPMENT

MIC.51210 Ocular Micrometer
An ocular micrometer is available for determining the size of eggs, larvae, cysts, trophozoites, and microfilaria or other bloodborne parasites.

REFERENCES

MIC.51220 Calibration/Recalibration - Ocular Micrometer

The ocular micrometer has been calibrated for the microscope(s) in which it is used and it is recalibrated each time the eyepieces or objectives are changed.

NOTE: Calibrations can be checked against a micrometer or other objects of known dimensions. If there are no changes to a particular microscope's optical components, there is no need to recheck calibration.

Evidence of Compliance:
✓ Records of initial calibration and recalibration if applicable

REFERENCES

PROCEDURES AND TESTS

Inspector Instructions:
- Sampling of parasitology test procedures
- Sampling of patient worksheets/records

- Follow a parasitology patient worksheet from receipt and processing to identification and reporting

STOOLS FOR OVA AND PARASITES

MIC.52100 Ova/Parasite Exam

The microscopic examination of all stools submitted for an ova and parasite (O&P) examination includes a concentration procedure and a permanent stain.

NOTE: When a stool specimen is submitted fresh, the usual approach would be to perform a direct wet preparation (looking for motility), a concentration (helminth eggs/larvae/protozoan cysts), and the permanent stained smear (identification of protozoa missed by concentration and confirmation of suspect organisms). As a minimum (and certainly if the stool is submitted in preservatives), the standard O&P examination would include the concentration procedure and a permanent stained smear. The main point is to ensure that the permanent stained smear is performed on all stool specimens, regardless of what was or was not seen in the concentration wet preparation. Often, intestinal protozoa will be seen in the permanent stained smear, but may be missed in the concentration examination.

Evidence of Compliance:
✓ Written procedures for stool for O&P AND
Patient reports/worksheets with concentration and permanent stain results

REFERENCES

Phase I
Stool Number/Timing
The laboratory has guidelines (developed with clinicians) for the number and/or timing of collection of stool specimens submitted for routine parasitology testing.

NOTE: Suggestions made by the authors of a 1996 CAP Q-Probes study (Valenstein et al) include:

1. Accept no more than 2 or 3 specimens/patients without prior consultation with an individual who can explain the limited yield provided by additional specimens
2. Do not accept specimens from inpatients after the fourth hospital day, without prior consultation

These recommendations are for diagnostic testing. Different guidelines may apply to tests ordered for follow-up.

REFERENCES

BLOOD FILMS FOR MALARIA AND OTHER PARASITES

REVISED 07/29/2013

Phase II
Blood Parasite Detection
The microscopic examination of blood films submitted for detection of blood parasites allows for detection of parasites responsible for malaria, babesiosis, trypanosomiasis and filariasis.

REFERENCES

Phase I
Percentage Parasitemia Reporting
When blood films are positive for malaria parasites (Plasmodium spp.), the percentage parasitemia is reported along with the organism identification.

NOTE: It is important to report the percentage of parasitemia when blood films are reviewed and found to be positive for malaria parasites. Because of the potential for drug resistance in some of the Plasmodium species, particularly P. falciparum, it is important that every positive smear be assessed and the parasitemia reported exactly the same way on follow-up specimens as on the initial specimen. This allows the parasitemia to be followed after therapy has been initiated. The parasitemia will usually drop very quickly within the first 24 hours; however, in cases of drug resistance, the level may not decrease, but actually increase over time.

Although there are currently no requirements for reporting percent parasitemia when blood films are positive for Babesia species, physicians may ask for these data to monitor the response to therapy.
Evidence of Compliance:
✓ Written procedure for performing and reporting parasitemia percentage with identification

REFERENCES
3) http://www.dpd.cdc.gov/DPDx/HTML/DiagnosticProcedures.htm

REVISED 07/29/2013

MIC.52200 Thick and Thin Films
Phase II

Both thick and thin films (routine blood films and/or buffy coat films), or methods of equivalent sensitivity, are made to provide thorough examination for blood parasites.

REFERENCES

MIC.52220 Malaria Stain Procedure
Phase I

There is documentation that malaria stains are washed with a buffer of a pH appropriate for the stain used (e.g. pH 6.8-7.2 for Giemsa), or the range specified by the manufacturer.

REFERENCES

REVISED 07/29/2013

MIC.52260 Slide Review Procedure
Phase II

An adequate number of fields are examined under oil immersion using the 100X oil immersion objective (e.g. 300 fields).

Evidence of Compliance:
✓ Written procedure defining criteria for assessment of malaria slides including objective and number of fields examined

REFERENCES

LABORATORY SAFETY

NOTE TO THE INSPECTOR: The inspector should review relevant requirements from the Safety section of the Laboratory General checklist, to assure that the parasitology laboratory is in compliance. Please elaborate upon the location and the details of each deficiency in the Inspector's Summation Report.

The following requirements pertain specifically to the parasitology laboratory.

Inspector Instructions:
- Formalin monitoring procedure and records of monitoring
Phase II

Formalin Safety

If a procedure uses formalin, formaldehyde vapor concentrations are maintained below the following maxima, expressed as parts per million.

NOTE: Formaldehyde vapor concentrations must be monitored in all areas where formalin is used. Initial monitoring involves identifying all employees who may be exposed at or above the action level or at or above the STEL and accurately determining the exposure of each employee identified. Once an initial monitoring procedure has been performed, further periodic formaldehyde monitoring is mandated at least every 6 months if the initial monitoring result equals or exceeds 0.5 ppm (8 hr time-weighted exposure, the “action level”) or at least once per year if the results exceed the short term exposure limit (STEL) 2.0 ppm. The laboratory may discontinue periodic formaldehyde monitoring if results from 2 consecutive sampling periods taken at least 7 days apart show that employee exposure is below the action level and the short-term exposure limit, and 1) no change has occurred in production, equipment, process or personnel or control measures that may result in new or additional exposure to formaldehyde, and 2) there have been no reports of conditions that may be associated with formaldehyde exposure.

Formaldehyde monitoring must be repeated any time there is a change in production, equipment, process, personnel, or control measures which may result in new or additional exposure to formaldehyde for an employee involved in the activity. If any personnel report signs or symptoms of respiratory or dermal conditions associated with formaldehyde exposure, the laboratory must promptly monitor the affected person’s exposure.

<table>
<thead>
<tr>
<th>8 hr Time-Weighted Exposure Limit</th>
<th>Action Level (8 hr Time-Weighted Exposure)</th>
<th>15 min Short-Term Exposure Limit (STEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Evidence of Compliance:

✓ Written safety procedure for formalin including action limits, criteria for discontinuation of monitoring and criteria for resumption of monitoring AND
✓ Record of initial formalin monitoring AND
✓ Records of resumption of formalin monitoring when action limits are exceeded

REFERENCES

3) Occupational Safety and Health Administration, 1998(Jul 1) [29CFR1910.1048]

Ether Safety

If a procedure uses ether, the diethyl ether is stored on open shelves in a well ventilated room using the smallest can feasible (as shipped by manufacturer).

NOTE: The use of concentration techniques other than those requiring the use of ether is recommended.
VIROLOGY

QUALITY CONTROL

Inspector Instructions:

READ

- Sampling of virology test procedures
- Sampling of virology media/reagent/cell line QC policies and procedures
- Sampling of virology QC records and cell line checks

ASK

- How are cell lines checked for contamination?
- How do you determine when QC is unacceptable and when corrective actions are needed?

DISCOVER

- Select several occurrences in which QC is unacceptable and follow documentation to determine if the steps taken follow the laboratory policy for corrective action
- Follow a virology patient worksheet from receipt and processing to identification and reporting

REAGENTS

MIC.61000 Breakage Phase I

The laboratory has documentation that each shipment of commercial cell culture tubes, flasks, shell vials or cluster trays is examined for breakage.

REFERENCES

MIC.61050 Acceptance of Materials Phase II

The laboratory has procedures for the acceptance and rejection of cell culture tubes, flasks, shell vials or cluster trays used for virus isolation.

NOTE: Cell cultures should be observed microscopically to confirm that the cells are attached to the substratum, the confluency of the monolayer is appropriate for the method and cell line (75%-90%) and cell appearance is typical. Confluent or overgrown monolayers may obscure viral cytopathic effect (CPE) in tube or flask cell cultures and can adversely affect the recovery of some more fastidious viruses, such as RSV. The cell culture media should be free of contamination (clear) and should be near a neutral pH (salmon pink in color). Cell culture tubes, flasks, vials or plates not meeting the expected criteria should be observed or rejected, depending on the observation and laboratory policies.

REFERENCES
Phase II

MIC.61140 Culture Media QC

Culture media are tested for sterility (if additives are introduced after initial sterilization).

NOTE: Entering the media to remove aliquots for refeeding, etc. does not generate the need for repeat sterility testing.

Evidence of Compliance:
- Written procedure for culture media QC AND
- Records of media sterility QC

Phase II Cell Line QC

Continuous cell lines are checked for mycoplasma contamination.

NOTE: An alternative method to culturing for mycoplasma is the monitoring of a negative, uninoculated control. If cell lines are provided by a commercial vendor, documentation of mycoplasma screening by the vendor is acceptable. Vendor documentation must be retained by the laboratory.

REFERENCES

Phase II Cell Line QC

Continuous cell lines are checked for endogenous viral contamination.

NOTE: Upon receipt in the laboratory and during the period of use, cell lines must be monitored for the presence of endogenous contamination due to viruses such as foamy virus and monkey virus.

Endogenous viral contamination must be documented. Individual laboratories may decide to reject all cell lines with contamination. Alternatively, cell lines may be monitored to determine if the contamination will prohibit the isolation and identification of patient viral isolates. Endogenously contaminated cell cultures can be evaluated by considering conditions such as the degree (percent) of contamination of the monolayer, the specificity of the contamination CPE, the effect of the contamination of the quality of the culture media, and the condition of the culture cell to support virus growth. If such contamination will affect the ability to recover patient isolates, cell lines must be rejected.

REFERENCES

Phase II Media QC

Animal sera used for cell growth media are checked for absence of toxicity to cells.

Evidence of Compliance:
- Written procedure for checks of animal sera for toxicity AND
- Records of animal sera checks

Phase II Cell Lines

The laboratory has the appropriate minimal cell line(s) available for all types of specimens tested and for all viruses reported by the laboratory.
NOTE: The following is a suggested list of cell lines for the intended purpose:

<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>CELL LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydia</td>
<td>McCoy or Buffalo Green Monkey Kidney</td>
</tr>
<tr>
<td>Herpes simplex</td>
<td>HDF, Primary or First Pass Rabbit Kidney, MRC-5, or A549, CV-1/MRC-5, transgenic BHK</td>
</tr>
<tr>
<td>Varicella zoster</td>
<td>HDF, Primary Monkey Kidney, CV-1/MRC-5</td>
</tr>
<tr>
<td>Influenza</td>
<td>Primary Monkey Kidney or MDCK, Mink lung /A549</td>
</tr>
<tr>
<td>Parainfluenza</td>
<td>Primary Monkey Kidney, Mink lung/A549</td>
</tr>
<tr>
<td>RSV</td>
<td>HEp-2 or Primary Monkey Kidney, Mink lung/A549</td>
</tr>
<tr>
<td>Enteroviruses</td>
<td>Primary Monkey Kidney, A549, HDF, MRC-5, GGMK+Daf/A549</td>
</tr>
<tr>
<td>Adenoviruses</td>
<td>HEp-2, Human Embryonic Kidney, A549, Mink lung/A549, MDCK/A549</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>LLC-MK2, Mink lung/A549</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>HDF, MRC-5</td>
</tr>
</tbody>
</table>

REFERENCES

MIC.61210 Incubation Time

Tube monolayer cultures are incubated for a sufficient time to recover the viruses for which service is offered.

NOTE: The following is a suggested list of minimum incubation times for the intended purpose:

Spin-amplified shell vials are not tube monolayer cultures. Most spin amplification cultures (shell vials) are completed after 24-48 hours; laboratories incubating their shell vials for this shorter period should have in-house data to support that practice.

<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>INCUBATION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpes simplex (genital)</td>
<td>5 days</td>
</tr>
<tr>
<td>Herpes simplex (other)</td>
<td>7 days</td>
</tr>
<tr>
<td>Respiratory viruses</td>
<td>10 days - 14 days</td>
</tr>
<tr>
<td>Other viruses</td>
<td>14 to 28 days</td>
</tr>
</tbody>
</table>

Evidence of Compliance:

✓ Written procedure indicating length of incubation for each virus cultured

REFERENCES

MIC.61300 Work Records

Phase II
Records are kept of cell types, passage number, source, and media that are used for specimen testing, virus culture or propagation and maintenance of control organisms.

CONTROLS AND STANDARDS

MIC.61310 Cytopathic Effect Phase II

Inoculated cultures are checked for cytopathic effect in a fashion that optimizes the time to detection of viral pathogens.

NOTE: If tube cultures are the only means for detection of virus, primary cultures must be checked at least every other working day for cytopathic effect during the first 2 weeks of incubation. If additional diagnostic methods are used (e.g. shell vials, antisera), the observation schedule may be modified as appropriate.

Evidence of Compliance:
✓ Written procedure defining the frequency of CPE checks
✓ Work records reflecting CPE examination documented at defined frequency

REVISED 04/21/2014

MIC.61320 Media QC Phase II

Uninoculated cell monolayers or monolayers that have been inoculated with sterile material are available for comparison with cultures of clinical material.

NOTE: Uninoculated cell culture controls must be included on each inoculation day of cell culture tubes in order to detect non-specific degeneration; or to detect extraneous infection of the cell culture with endogenous viral agents capable of producing cytopathic effects.

Evidence of Compliance:
✓ Records of uninoculated/sterile cell monolayer checks documented at defined frequency

REFERENCES

MIC.61325 Unusual Cytopathic Effect Phase I

There are procedures for the handling of cell cultures with unusual cytopathic effect.

NOTE: Unusual CPE can be detected in cell culture from samples positive for viruses not commonly detected by the laboratory (i.e. monkey pox, vaccina, variola, etc.) Procedures should include guidelines as to the extent of further manipulation of the cell culture and notification of the appropriate regulatory agency (ex. Department of Health, CDC).

MIC.61330 Media/Diluent QC Phase II

Media and diluents are checked for sterility and pH.

NOTE: It is satisfactory to test either the individual components or the final product.

Evidence of Compliance:
✓ Records of sterility and pH QC results
MIC.61340 Standardized Red Cell Suspensions Phase I

Red cell suspensions that are used for quantitative serologic procedures are standardized (photometrically or with some other equivalent procedure).

Evidence of Compliance:
✓ Written procedure for standardization of red cell suspensions

MIC.61350 Agglutination/Lysis Criteria Phase I

Criteria for degrees of agglutination and lysis are defined for quantitative serologic procedures.

REVISED 07/29/2013

MIC.61360 Work Records Phase I

Worksheets and/or records indicate actual titers, when known, of reagents and control sera.

MIC.61370 Serologic QC Phase II

Reactive and nonreactive controls are processed in serologic reactions for detection of antibodies or antigens.

NOTE: Positive and negative controls must be run daily for immunofluorescent and immunochromatic testing when using pool reagents and for virus specific reagents, if performed. For testing using shell vials and/or co-cultivated cell lines that detect multiple viruses, laboratories can control both the ability of the cell lines to support the growth of the virus(es) and the reactivity of the detection reagents by rotating growth controls that include the viruses tested for. By using this method over the course of a week, the cell culture lot and detection reagents will be checked for all viruses. While rotation of viral culture controls for all viral targets is desirable, certain viruses may be difficult to maintain by serial propagation (for example varicella zoster virus). In these cases, integrity of the cell line may be demonstrated through the use of other, more easily propagated viruses.

Evidence of Compliance:
✓ Written procedure for serological QC AND
✓ Records of serological QC results

MIC.61380 Reagent Verification Phase II

Each new lot and shipment of reagents that detect multiple viruses are verified for each individual virus component prior to patient testing

NOTE: A pool reagent cannot be verified using only a pool control, as the reactivity of each virus specific component cannot be individually assessed. After initial verification, pool controls can be used for daily quality control of the pool reagent.

Evidence of Compliance:
✓ Records of IF reagent verification, as applicable

REFERENCES

MIC.61550 QC Confirmation of Acceptability Phase II

The results of controls are reviewed for acceptability before reporting patient results.
Evidence of Compliance:
✓ Written policy/procedure stating that controls are reviewed and acceptable prior to reporting patient results AND
✓ Evidence of corrective action taken when QC results are not acceptable

REFERENCES

MIC.62300 QC Corrective Action

Phase II

There is documentation of corrective action when quality control results exceed the acceptability limits.

NOTE: Patient test results obtained in an analytically unacceptable test run or since the last acceptable test run must be re-evaluated to determine if there is a significant clinical difference in patient results. Re-evaluation may or may not include retesting samples, depending on the circumstances.

REFERENCES

TESTS AND PROCEDURES

Inspector Instructions:
- Sampling of virology test procedures
- Sampling of virology patient reports

MIC.62400 Order Information

Phase I

For viral screening tests by direct antigen detection (direct immunofluorescence or EIA), rapid cell culture or molecular methods, reports and test order information indicates the specific viruses sought/detected by the assay.

NOTE: For example, if the rapid cell culture method is used to detect 7 different respiratory viruses, then the report must specifically indicate which viruses are included in the screening. While the cell lines in use may permit the growth of other viruses, such as enterovirus, these need not be specifically enumerated in the report, unless detected in a given sample.

MIC.62500 Isolation Procedures

Phase I

The laboratory has procedures for the isolation of viruses based upon such criteria as specimen source, diagnosis, suspected virus(es) and season.

NOTE: Testing algorithms can vary depending on specimen type, virus(es) suspected, immune status of the patient, and season. For example, routine rapid EIA testing for influenza is not recommended outside of the respiratory virus season due to low specificity.

REFERENCES

MIC.62550 CMV Antigenemia

Phase I
The laboratory has policies for the acceptance and rejection of samples for CMV antigenemia testing.

NOTE: Policies and procedures must be in place to deal with suboptimal specimens, such as those whose receipt in the laboratory exceeds the time frame for optimal test sensitivity, or those samples with low cellularity. If it is not possible to recollect a sample, and such specimens are tested, results must be accompanied by a comment noting the potential reduction in test reliability due to inappropriate sample storage and/or delay in processing.

REFERENCES

LABORATORY SAFETY

NOTE TO THE INSPECTOR: The inspector should review relevant requirements from the Safety section of the Laboratory General checklist, to assure that the virology laboratory is in compliance. Please elaborate upon the location and the details of each deficiency in the Inspector's Summation Report.

The following requirements pertain specifically to the virology laboratory.

Inspector Instructions:
- Sampling of virology specimen handling and processing procedures
- Records of biological safety cabinet certification

MIC.62560 Tzanck Test

Phase I

Slides for the Tzanck test are of sufficient quality for diagnosis.

NOTE: Slides must be of adequate technical quality to be diagnostically useful. The laboratory should have access to a photographic atlas appropriate to the diagnostic purpose and method (e.g. Papanicolaou or Giemsa) in use.

MIC.63050 Biological Safety Cabinet

Phase II

A biological safety cabinet (BSC) or hood is available for handling specimens or organisms considered to be highly contagious by airborne routes.

Evidence of Compliance:
- Maintenance schedule of BSC function checks **AND**
- Records of testing and certification

REFERENCES

MIC.63100 Biological Safety Cabinet

Phase II

The BSC is certified annually to ensure that filters are functioning properly and that airflow rates meet specifications.
Evidence of Compliance:
✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification

MIC.63150 Biological Safety Cabinet Phase II

The BSC meets minimum requirements for virology work.

NOTE: Exhaust air from a class I or class II BSC must be filtered through HEPA filters. Air from Class I and IIB is hard ducted to the outside. Air from Class IIA cabinets may be recirculated within the laboratory if the cabinet is tested and certified at least every 12 months. It may be exhausted through a dedicated stack that protects against backflow of air from adverse weather conditions or through the building exhaust air system in a manner (e.g. thimble connection) that avoids any interference with the air balance of the BSC or building exhaust system.

Evidence of Compliance:
✓ Written procedure defining the types of safety cabinets, filtration systems and exhaust systems used AND
✓ Maintenance schedule of BSC function checks AND
✓ Records of testing and certification AND
✓ Records of HEPA filters used for filtration of all BSC classes AND
✓ Records of exhaust mechanism OR recirculation, if appropriate

REFERENCES

MIC.63200 Specimen Handling/Processing Phase II

There are written procedures for the safe handling and processing of virology specimens.

Evidence of Compliance:
✓ Written policies for safe handling/processing of specimens

REFERENCES

MIC.63220 Specimen Handling/Processing Phase II

There are written procedures for the safe handling and processing of samples that are suspected to contain avian influenza virus, SARS coronavirus, or other similar emerging pathogens.

NOTE: Laboratories must follow State and Federal guidelines for the handling of samples from patients suspected to have high risk pathogens such as avian influenza or SARS.

REFERENCES

MIC.63250 Hazardous Waste Disposal Phase II

Specimens and used media are disinfected, sterilized or contained in a manner to minimize the hazard of an accident during transportation to a remote autoclave or incinerator.

Evidence of Compliance:
✓ Written procedure for the handling and disposal of microbiology waste
MOLECULAR MICROBIOLOGY

For guidance on which subsection of the Molecular part of the Microbiology checklist applies to specific types of tests, see table below. Note that the subsection on General Requirements applies to all of these tests.

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Examples</th>
<th>Required Checklist Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA-cleared/approved non-amplification methods</td>
<td>PACE2 for detection of CT/GC, PNA FISH, AFFIRM</td>
<td>FDA-cleared/approved non-amplification methods</td>
</tr>
<tr>
<td>FDA-cleared/approved amplification methods</td>
<td>HIV-1 viral load, amplified CT/GC, HPV, HIV-1 genotyping</td>
<td>FDA-cleared/approved target & signal amplification methods & sequencing</td>
</tr>
<tr>
<td>FDA-cleared/approved amplification methods, using a different specimen type other than cleared/approved</td>
<td>Use of CSF specimens in HIV-1 viral load testing, use of rectal swab for CT testing</td>
<td>FDA-cleared/approved target & signal amplification methods & sequencing</td>
</tr>
<tr>
<td>FDA-cleared/approved amplification methods, using a collection device other than cleared/approved</td>
<td>Changing the collection device or swab for CT/GC testing, alternative swab or transport media for respiratory virus detection</td>
<td>FDA-cleared/approved target & signal amplification methods & sequencing</td>
</tr>
<tr>
<td>FDA-cleared/approved amplification methods with modification of a test component</td>
<td>Changing the extraction method for HIV-viral load testing, modification of interpretative criteria</td>
<td>Laboratory-developed or modified FDA-cleared/approved tests</td>
</tr>
<tr>
<td>Laboratory-developed tests</td>
<td>CMV viral load testing using an ASR, laboratory developed EBV viral load with custom synthesized primers and probes</td>
<td>Laboratory-developed or modified FDA-cleared/approved tests</td>
</tr>
</tbody>
</table>

The requirements for validating these modifications are found in the “FDA-cleared/approved Target & Signal Amplification Methods & Sequencing” section. The validation data must demonstrate that the test performs better than or equal to the FDA-cleared/approved protocol. While these tests do not require the “Laboratory-developed or Modified FDA-cleared/approved Tests” section of the Microbiology Checklist to be used, the CAP recognizes that any modification to the manufacturer instructions no longer allows the test method to be considered FDA-cleared or approved. Laboratories are also subject to the test method validation requirements in the All Common Checklist.

This checklist section does not apply to tests using direct non-amplified nucleic acid probes to identify organisms from a positive culture. Such tests may be inspected with the Mycobacteriology, Mycology or other appropriate section of this checklist.

This checklist section applies to all other molecular microbiology tests, including FDA-cleared/approved tests, as well as tests not cleared/approved by the FDA (including FDA-cleared/approved tests modified by the laboratory, and laboratory-developed tests). A database of FDA-cleared/approved tests can be found at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCLIA/Search.cfm

When specimens are referred to outside reference laboratories for sequence analysis or other testing, such laboratories must meet the requirements in GEN.41350 and other applicable requirements in the “Reporting of Results” section of the Laboratory General checklist.

Laboratories that use this section of the checklist must also comply with all applicable requirements included in the General section of the Microbiology checklist.
GENERAL REQUIREMENTS

QUALITY MANAGEMENT

Inspector Instructions:

- Sampling of QM statistics/turnaround time data
- What is your course of action when monitored statistics increase above the expected positive rate?

MIC.63252 Statistics Phase I

When appropriate, appropriate statistics (e.g. percentage of results that are positive for *Chlamydia trachomatis* and/or *Neisseria gonorrhoeae*) are maintained and monitored.

NOTE: An increase above the expected positive rate within a run or over multiple runs should prompt investigation for potential false positive results.

Evidence of Compliance:

✓ Written procedure for calculating statistics including thresholds **AND**
✓ Records of statistical data, evaluation and corrective action if indicated

MIC.63256 Turnaround Times Phase I

There is evidence that the laboratory monitors sample turnaround times and that they are appropriate for the intended purpose of the test.

NOTE: There are certain clinical situation in which rapid completion is essential. An example is detection of HSV in CSF.

Evidence of Compliance:

✓ Written policy defining turnaround time and mechanism for monitoring **AND**
✓ Records showing that times defined in the policy are routinely met

NEW 04/21/2014

MIC.63259 Validation of Specimen Pooling Phase II

If the laboratory chooses to pool specimens for tests performed using test systems that have not been FDA-cleared/approved for that purpose (e.g. *Chlamydia trachomatis*/*Neisseria gonorrhoeae* NAAT on pooled urine specimens), the testing procedure for pooled specimens must be validated, including limit of detection (sensitivity), reproducibility, and accuracy (method comparison).

NOTE: As part of the method comparison, the protocol for pooled specimens must be compared to the single (non-pooled) testing protocol using an adequate number of clinical specimens covering
the entire range of organism concentration seen in clinical specimens (i.e. low and high positive specimens).

The sensitivity of the pooling method compared to the FDA-cleared/approved unpoled method must be established. The validation requirements in the "Laboratory-developed or Modified FDA-cleared/approved Test" section of the checklist must be used for inspection of this testing. Any clinical claim regarding the efficacy of pooling must be validated (see COM.40640).

REFERENCES

QUALITY CONTROL

Controls are samples that act as surrogates for patient/client specimens. They are processed like a patient/client sample to monitor the ongoing performance of the entire analytic process in every run.

Qualitative molecular tests typically include positive and negative controls and, in some instances, a sensitivity control to show that low level target is detectable. Quantitative tests typically include a negative control and at least two (2) levels of control at relevant decision points to verify that calibration status is maintained within acceptable limits.

Inspector Instructions:

- Sampling of molecular microbiology QC policies and procedures
- Sampling of molecular microbiology QC records

- How do you determine when QC is unacceptable and when corrective actions are needed?
- How would you investigate results of negative controls that test as positive or equivocal?
- What is your course of action when monthly precision data changes significantly from the previous month's data?

- Select several occurrences in which QC is out of range and follow documentation to determine if the steps taken follow the laboratory policy for corrective action

 Controls are run daily for quantitative and qualitative tests.

NOTE 1: Controls should check assay performance at relevant clinical decision points. The selection of these points may be based on clinical or analytical criteria.

NOTE 2: Except for tests meeting the criteria in Note 3, below, external surrogate sample* controls must be run as follows:

- For quantitative molecular tests, 3 controls must be run daily - a negative control, a low-positive control and a high-positive control, except where a specific exception is given in this checklist
- For qualitative tests, a positive and negative control must be run daily

Control testing is not necessary on days when patient testing is not performed.
NOTE 3: Daily controls may be limited to electronic/procedural/built-in (e.g. internal, including built-in liquid) controls for tests meeting the following criteria:

1. For quantitative tests, the test system includes 2 levels of electronic/procedural/built-in internal controls that are run daily
2. For qualitative tests, the test system includes an electronic/procedural/built-in internal control run daily
3. For laboratories subject to US regulations, the system is FDA-cleared or approved, and not modified by the laboratory
4. The laboratory has performed studies to check the adequacy of limiting daily QC to the electronic/procedural/built-in controls. Studies must include daily comparison of external controls to built-in controls for at least 20 consecutive days when patient samples are tested. For checking of multiple identical devices, the minimum of 20 consecutive daily comparisons applies to the initial device; the laboratory director is responsible for determining the extent of the comparison studies for the other devices. Acceptable results are required before daily quality control can be limited to built-in controls. The laboratory director is responsible for determining criteria for acceptability. Records must be retained while an instrument/method is in service, and for two years afterwards. The requirement for 20 consecutive daily comparisons is effective for verification studies performed after 1/31/2012. Corrective action must be taken if either the internal or external control is out of acceptable range during or after the evaluation process. Repeating controls or re-evaluation of the internal control system may be necessary to achieve acceptable results.
5. External surrogate sample controls are run for each new lot number or shipment of test materials; after major system maintenance; and after software upgrades.** Regarding the positive external control for qualitative tests, best practice is to run a weak positive control, and in the case of drug testing, also a high negative control (e.g. 25% below cutoff) to maximize detection of problems with the test system.
6. External surrogate sample controls are run as frequently as recommended by the test manufacturer, or every 30 days, whichever is more frequent.

NOTE 4: Controls must assess adequacy of extraction and amplification, e.g. positive and negative controls that go through the entire testing process. NOTE 4 does not apply to single use cartridge tests.

1. If the internal control does not go through the extraction method, a separate extraction control is needed for each run (positive controls fulfill this requirement).
2. If the samples from an extraction batch are tested over multiple amplification runs, each amplification run (as defined by the laboratory) must have its own amplification control. A single extraction control need only be tested in one of the amplification runs.
3. If samples from multiple extraction batches are tested in a single amplification run, each extraction batch needs an extraction control. All extraction controls must be tested in a single amplification run. A single amplification control is sufficient.

*A “surrogate sample” is a specimen designed to simulate a patient sample for quality control purposes. Traditional external liquid control materials are considered surrogate external surrogate sample controls. Some surrogate sample controls may not be external, but may be contained within an instrument (e.g. in a cartridge); systems using these built-in controls must meet the requirements in Note 2, above.

**Repetition of the initial comparison study is not required when running external surrogate sample controls with new lots/shipments of test materials, after system maintenance or software upgrades, or in accordance with paragraph 6 in the Note.
Evidence of Compliance:
✓ Records of QC results including external and electronic/procedural/built-in control systems
✓ Records documenting in-house checking of electronic/procedural/built-in control systems, if used

REFERENCES

MIC.63264 Multiplex QC

Phase II

For multiplex tests, controls for each analyte are either included in each run or rotated so that all analytes are tested periodically.

Evidence of Compliance:
✓ Written procedure defining multiplex test QC AND
✓ Records of multiplex test QC

MIC.63274 QC Confirmation of Accuracy

Phase II

Results of controls are reviewed for acceptability prior to reporting patient results.

NOTE: Conditions causing unacceptable control results must be investigated and corrective action must be documented.

Evidence of Compliance:
✓ Written policy/procedure stating that controls are reviewed and acceptable prior to reporting patient results AND
✓ Evidence of corrective action taken when QC results are not acceptable

MIC.63275 QC Acceptability Limits

Phase II

Acceptability limits are defined for all control procedures, control materials, and standards.

NOTE: Acceptability limits must be defined for all control procedures, control materials, and standards. These controls must be appropriate for the range of sensitivities tested and should, ideally, focus on result ranges that are near clinical decision points.

Evidence of Compliance:
✓ Written QC procedure(s) defining acceptability limits

MIC.63276 QC Corrective Action

Phase II

There is documentation of corrective action when control results exceed defined acceptability limits.

NOTE: Even if patient samples are no longer available, test results can be re-evaluated to search for evidence of an out-of-control condition that might have affected patient results. For example, evaluation could include comparison of patient means for the run in question to historical patient means, and/or review of selected patient results against previous results to see if there are consistent biases (all results higher or lower currently than previously for the test(s) in question). Re-evaluation may or may not include retesting samples, depending on the circumstances.

REFERENCES

REVISED 07/29/2013
Phases

MIC.63277 QC Statistics

For quantitative assays, quality control statistics are performed monthly to define analytic imprecision and to monitor trends over time.

NOTE: The laboratory must use statistical methods such as calculating SD and CV monthly to evaluate variance in numeric QC data.

Evidence of Compliance:
✓ Written procedure for monitoring of analytic imprecision including statistical analysis of data

REFERENCES
1) Mukherjee KL. Introductory mathematics for the clinical laboratory. Chicago, IL: American Society of Clinical Pathology, 1979:81-94
2) Barnett RN. Clinical laboratory statistics, 2nd ed. Boston, M; Little, Brown, 1979

MIC.63278 Inhibition Assessment

For assays without an internal control, the laboratory has a procedure to assess inhibition for each specimen type.

NOTE: Documentation of an acceptable inhibition rate may be provided by the manufacturer. If not, laboratories may test for inhibition by spiking an aliquot of the clinical specimen with target nucleic acid. This practice can be discontinued once the laboratory accumulates sufficient data showing that the inhibition rate falls within acceptable limits.

This requirement does not apply to probe-based solution hybridization methods (e.g. Gen-Probe AccuProbe) performed without nucleic acid amplification.

REFERENCES
1) Ballagi-Pordany A, Belek S. Mol Cell Probes 1996 Jun 10(3):159-64

MIC.63282 Equivocal QC

If results of negative controls are positive or equivocal, the laboratory has a written procedure in place to investigate and resolve the problem.

NOTE: This checklist requirement does not apply to probe-based solution hybridization methods (e.g. Gen-Probe AccuProbe) performed without nucleic acid amplification.

PROCEDURE MANUAL

NOTE: The requirements in the Procedure Manual subsection of the All Common Checklist are applicable to the Molecular Microbiology section.

Inspector Instructions:

• Sampling of molecular microbiology procedures for analytic interpretation of results and calculation of quantitative values
Phase II Analytic Interpretation

There are written guidelines for analytic interpretation of results, as applicable.

Phase II Calculating Quantitative Values

For quantitative molecular tests, methods for calculating quantitative values are adequately described and units clearly documented.

SPECIMEN HANDLING & PROCESSING

Inspector Instructions:

- Sampling of molecular microbiology specimen handling and processing policies and procedures
- Patient specimens/aliquots (storage, labeling)
- What is your process for identification of patient specimens and aliquots?

Phase II Specimen Collection Manual

Procedures are in place to prevent specimen loss, alteration, or contamination during collection, transport, processing and storage.

NOTE: Specimen collection, processing and storage must follow manufacturer instructions. For example, for amplified molecular testing using liquid based cervical cytology (LBC) specimens, there must be a procedure in place to ensure absence of cross contamination of samples during the LBC processing steps; alternatively, an aliquot can be removed for amplified molecular testing prior to LBC processing.

Phase II Specimen Aliquots

If aliquoting of specimens is performed, there is a written procedure to prevent any possible cross-contamination of the aliquot containers.

NOTE: Although in some cases it may be appropriate to aliquot a specimen, the laboratory must have a policy that no aliquot is ever returned to the original container.

REVISED 07/29/2013
If residual samples are used for amplification-based testing, policies and procedures ensure absence of cross-contamination of samples.

NOTE: An example of a residual sample is a liquid based cytology sample that is tested post-cytologic processing using amplified C. trachomatis or N. gonorrhoeae tests.

MIC.63327 Specimen ID

There is a system to positively identify all patient specimens, specimen types and aliquots through all phases of the analysis, including specimen receipt, nucleic acid extraction, nucleic acid quantification, hybridization, detection, documentation, and storage.

NOTE: Each specimen container must identify the patient uniquely. Identification may be text-based, numeric, bar-coded, etc. The form of this system is entirely at the discretion of each laboratory, so long as all primary collection containers and their aliquots have a unique label which one can trace back to full particulars of patient identification, collection date, specimen type, etc.

MIC.63328 Specimen Processing/Storage

Patient samples are processed promptly or stored appropriately to minimize degradation of nucleic acids.

NOTE: Frost-free freezers may not be used to store patient samples unless freezer temperature is monitored by a continuous monitoring system, or a maximum/minimum thermometer.

Evidence of Compliance:

✓ Written procedure for processing and storage of specimens

REFERENCES

RESULTS REPORTING

Inspector Instructions:

- Sampling of test reports (test methodology, clinical interpretation)

MIC.63330 Final Report

The final report includes a summary of the test method and information regarding clinical interpretation if appropriate.

NOTE: For example, HIV-1 viral load results may vary significantly depending upon the test method used; including the test method in the report is important information for interpreting the results.
REAGENTS

Inspector Instructions:

- Sampling of reagents/controls (storage, designated pre- and post-amplification)

- How do you verify new multiplex lots/shipments?

MIC.63350 Reagent Storage Phase II

All test reagents and controls are stored properly and in a manner which minimizes target DNA/RNA contamination and degradation.

NOTE: Pre- and post-amplification reagents and controls should be stored under appropriate temperature and other conditions in designated pre- and post-amplification areas.

Temperature-sensitive reagents and/or controls may not be stored in frost-free freezers, unless either of the following conditions are met: 1) Reagent/control materials are kept in thermal containers and the laboratory can demonstrate that the function of these materials is not compromised; or 2) Freezer temperature is monitored by a continuous monitoring system, or a maximum/minimum thermometer.

Patient samples may be stored in a frost free freezer only if the temperature is monitored in accordance with (2), above.

Evidence of Compliance:
✓ Written procedure defining storage requirements for reagents and controls

REFERENCES

REVISED 04/21/2014

MIC.63580 New Reagent Lot - Multiplex Tests Phase II

For multiplex tests, all analytes detected by the assay are individually verified for each new shipment and/or lot.

NOTE: Verification of new shipments and/or lots may be difficult for rare organisms or subtypes. In these situations, verification may be performed annually.

When a new lot is received, it is recommended that rotation of individual multiplex analytes be tested to challenge the limit of detection and ensure there has not been a loss in sensitivity of the test method. This may also be ensured if the manufacturer publishes documentation of the sensitivity or LOD for each lot.

Evidence of Compliance:
✓ Written procedure for new lot/shipment verification of all analytes detected by each multiplex assay AND
✓ Records of new lot/shipment verification
PROCEDURES & TESTS

Inspector Instructions:

- Sampling of test procedures
- Sampling of temperature incubation logs

- Physical containment practices (frequent glove change, separate manipulation of pre- and post-specimens, dedicated pipettes)

- What is your course of action when the incubation temperature is out of range?

MIC.63800 Carryover Phase II

Nucleic acid amplification procedures (e.g. PCR) are designed to minimize carryover (false positive results) using appropriate physical containment and procedural controls.

NOTE: This item is primarily directed at ensuring adequate physical separation of pre- and post-amplification samples to avoid amplicon contamination. The extreme sensitivity of amplification systems requires that the laboratory take special precautions. For example, pre- and post-amplification samples should be manipulated in physically separate areas; gloves must be worn and frequently changed during processing; dedicated pipettes (positive displacement type or with aerosol barrier tips) must be used; and manipulations must minimize aerosolization. Enzymatic destruction of amplification products is often helpful, as is real-time measurement of products to avoid manual manipulation of amplification products.

Evidence of Compliance:

✓ Written procedure that defines the use of physical containment and procedural controls as applicable to minimizing carryover

REFERENCES

MIC.64025 Isolation/Preparation Phase II

The adequacy of nucleic acid isolation/preparation procedures are evaluated.

NOTE: Adequacy of nucleic acid isolation/preparation procedures (manual or automated) must be evaluated with each assay by the use of positive and negative controls run in parallel with patient samples. To the extent possible, controls must be processed through all steps of the assay, including the extraction phase.

Evidence of Compliance:

✓ Written procedure for evaluating adequacy of nucleic acid **AND**

✓ Records of controls used to assess adequacy
Temperature Range Defined

For each step of the procedure all incubation temperatures are defined and documented.

NOTE: For some instruments this function is performed automatically by software provided by the manufacturer.

Incubations - Manufacturer Specifications

Incubations (reactions) performed using baths/blocks/instruments meet manufacturer specifications.

NOTE: Bath/blocks/instruments must be able to maintain the appropriate temperature throughout the incubation (reaction) within the range specified by the manufacturer of the assay.

Evidence of Compliance:
✓ Written procedure for incubation performance consistent with manufacturer specifications

INSTRUMENTS

Inspector Instructions:

• Sampling of thermocycler well accuracy records

Thermocycler Temperature Checks

Individual wells (or a representative sample thereof) of thermocyclers are checked for temperature accuracy before being placed in service and at least annually thereafter.

NOTE: A downstream measure of well-temperature accuracy (such as productivity of amplification) may be substituted to functionally meet this requirement. For closed systems this function should be performed as a component of the manufacturer-provided preventative maintenance.

Evidence of Compliance:
✓ Written procedure for verification of thermocycler accuracy AND
✓ Records of thermocycler verification

REFERENCES

LABORATORY SAFETY

The inspector should review relevant requirements from the Safety section of the Laboratory General checklist, to assure that the molecular testing section is in compliance. Please elaborate upon the location and the details of each deficiency in the Inspector's Summation Report.

The following requirement pertains specifically to the molecular microbiology section.
Inspector Instructions:

● Sampling of molecular microbiology specimen handling and processing procedures

MIC.64620 Specimen Handling/Processing Phase II

There are documented policies for the safe handling and processing of samples from patients with suspected infections due to avian influenza, SARS, or similar emerging pathogens.

PERSONNEL

Inspector Instructions:

● Sampling of personnel training records

REVISED 07/29/2013

MIC.64631 Personnel Training Phase II

There is an adequate training program for supervisory personnel and technologists.

Evidence of Compliance:
✓ Documented training program AND
✓ Records of training by the institution or appropriate outside organization

REFERENCES
5) Yapit MK. Resources and strategies for a successful CE program. Med Lab Observ. 1989(Apr):47-566

FDA CLEARED/APPROVED NON-AMPLIFICATION METHODS

Examples of this type of testing include C. trachomatis/N. gonorrhoeae DNA probes, Group A Streptococcus DNA probes, PNA FISH testing, and Affirm T. vaginalis, C. albicans, and G. vaginalis testing.

This section is used for the direct detection of pathogens from clinical samples and not for culture confirmation.
QUALITY CONTROL

Inspector Instructions:

- Sampling of molecular microbiology QC policies and procedures
- Sampling of molecular microbiology QC records

- What is your course of action when ISH results do not correlate with culture findings?
- What follow-up action is taken when a negative result is obtained for Group B strep tests using direct DNA probes?

MIC.64710 ISH QC Phase II

Appropriate positive and negative controls are run in parallel and results documented for each microbial in situ hybridization (ISH) analysis.

NOTE: Laboratories should refer to the manufacturer’s guidelines for the selection of appropriate controls. Quality control must be performed with every run, independent of the number of samples tested (i.e. 1 sample or batch of several samples)

Evidence of Compliance:
✓ Written procedure for ISH QC consistent with manufacturer’s guidelines

REFERENCES

MIC.64720 QC Corrective Action Phase II

Corrective action is documented when microbial ISH (in situ hybridization) results do not correlate with culture findings.

NOTE: Discordant findings should be promptly investigated for potential false positive or false negative results from reagent failure, technical error, interpretive error or cross-reactivity of probes.

REFERENCES

REVISED 07/29/2013

MIC.64730 Slide Usage - Manufacturer Recommendations Phase II

For microbial fluorescence in situ hybridization (FISH) testing, the laboratory uses only the microscope slides and filters recommended by the manufacturer.
NOTE: Use of other microscope slides can result in inaccurate or inconclusive results from non-specific or interfering background fluorescence.

MIC.64750 **Group B Screening** **Phase II**

Negative results obtained for Group B streptococcus intrapartum screening by direct DNA probe are followed up with a selective broth culture method.

NOTE: This test is insufficiently sensitive to detect light colonization and is therefore not adequate to replace culture based prenatal screening or to use in place of risk based approaches when culture results are unknown at the time of labor. An adequate rapid intrapartum test must be as sensitive as culture of vaginal and rectal swabs inoculated into selective broth media.

Evidence of Compliance:
✓ Written procedure requiring follow-up testing for negative Group B performed by direct DNA probe

REFERENCES

ASSAY VERIFICATION

Inspector Instructions:

- **READ**
 - Sampling of assay verification studies

- **ASK**
 - How does your laboratory verify assay performance prior to test implementation?

MIC.64760 **Verification Study** **Phase II**

There is documentation that the laboratory has performed a verification study prior to reporting patient results.

NOTE: Laboratories must verify manufacturer data on analytic accuracy, precision and reportable range. Verification studies must include an adequate number of positive and negative samples representing the specimen types used in the assay (e.g. cervical swabs, urethral swabs and urine). Samples may include spiked specimens (suspensions of target added to appropriate matrix), if patient samples are not available or inadequate in number across the dynamic range of a quantitative assay.

For analytic sensitivity, interferences and reference ranges, laboratories may use data from the manufacturer or the literature. Refer to the section “Test Method Verification” in the All Common Checklist for additional details.
If the laboratory tests sample types or uses collection devices other than those listed in the package insert, the laboratory performs validation studies to document adequate performance of the test.

NOTE: If the use of an alternative specimen type or collection device requires any part of the test procedure to be modified (including, for example, a preprocessing step), the test is subject to the requirements of the section "Laboratory-developed or Modified FDA-cleared/approved Tests."

If no additional modifications to the procedure are necessary, the use of the separate section is not required for specimen types or collection devices not listed in the package insert. While these tests do not require the "Laboratory-developed or Modified FDA-cleared/approved Tests" section of the Microbiology Checklist to be used, the CAP recognizes that any modification to the manufacturer instructions no longer allows the test method to be considered FDA-cleared or approved. Laboratories are also subject to the test method validation requirements in the All Common Checklist.

Results from tests performed on sample types not listed in the package insert may be reported without complete validation only if the sample type is encountered rarely, precluding an adequate number for validation studies. Under these circumstances, the test report must include a disclaimer stating that the sample type has not been validated.

FDA CLEARED/APPROVED TARGET & SIGNAL AMPLIFICATION METHODS & SEQUENCING

Examples of this type of testing include both target and signal nucleic acid amplification tests for the detection of *C. trachomatis*, *N. gonorrhoeae*, methicillin resistant *Staphylococcus aureus*, human papillomavirus, *Mycobacterium tuberculosis*, HIV-1 and Hepatitis C viral load testing, and HIV-1 genotypic testing.

QUALITY CONTROL

Inspector Instructions:

- Sampling of molecular microbiology test procedures
- Validation studies if different sample types or collection devices are utilized
- Validation studies if different cut-off values are utilized
- Sampling of calibration records
- What collection device is used for this assay (confirm as stated in package insert)?

MIC.64810 Test Performance - Manufacturer Instructions

Tests are performed and results reported as specified in package inserts without substitution of reagents or modification of testing protocol.

NOTE: If use of an alternative specimen type or collection device requires any part of the test procedure to be modified (e.g. a preprocessing step), the test is subject to the requirements of the checklist section "Laboratory-developed or Modified FDA-cleared/approved Tests."
If no additional modifications to the procedure are necessary the use of the separate section is not required for specimen types or collection devices not listed in the package insert; however, the modification is subject to the validation requirements defined in MIC.64815.

REVISED 07/29/2013

MIC.64815 Validation Studies - Sample Type/Collection Phase II

If the laboratory tests sample types or uses collection devices other than those listed in the package insert, the laboratory performs validation studies to document adequate performance of the test.

NOTE: If the use of an alternative specimen type or collection device requires any part of the test procedure to be modified (including, for example, a preprocessing step), the test is subject to the requirements of the section "Laboratory-developed or Modified FDA-cleared/approved Tests."

If no additional modifications to the procedure are necessary, the use of the separate section is not required for specimen types or collection devices not listed in the package insert. While these tests do not require the "Laboratory-developed or Modified FDA-cleared/approved Tests" section of the Microbiology Checklist to be used, the CAP recognizes that any modification to the manufacturer instructions no longer allows the test method to be considered FDA-cleared or approved. Laboratories are also subject to the test method validation requirements in the All Common Checklist.

Results from tests performed on sample types not listed in the package insert may be reported without complete validation only if the sample type is encountered rarely, precluding an adequate number for validation studies. In these circumstances, the test report must include a disclaimer stating that the sample type has not been validated.

REVISED 07/29/2013

MIC.64817 Pre-enrichment Step - GBS Phase II

A pre-enrichment step using a selective broth enrichment culture is performed for antepartum (35-37 weeks gestation) vaginal/rectal swab screening for Group B streptococci (GBS) colonization by nucleic acid amplification testing (NAAT).

NOTE: If direct sample testing is performed, without the broth enrichment step, all antepartum samples testing negative for GBS must be followed up with a selective enrichment broth step in conjunction with culture or NAAT testing.

The utility of NAAT assays for intrapartum testing (i.e. during active labor) remains unsettled. If used, it is recommended that testing only be considered for women not appropriately screened at 35-37 weeks and for whom no other clinical risk factors related to neonatal GBS infection are present during labor.

REFERENCES

MIC.64820 M.tb Molecular Testing Phase II

When performing molecular testing for the detection of *M. tuberculosis* directly from clinical specimens, culture is performed on all samples regardless of the molecular test result.

Evidence of Compliance:
✓ Patient reports or worksheets

MIC.64825 Modified Cut-Off Phase II
If the laboratory has modified the manufacturer’s cut off-value for a positive result, the new cut-off value has been validated.

Evidence of Compliance:
✓ Records of cut-off validation when different cut-off values are utilized

NEW 07/29/2013
NEW/REVISED 04/21/2014

MIC.64830 Test Calibration

Phase II

For quantitative tests, test calibration is performed according to the manufacturer’s specifications.

NOTE: Calibrators should be run following the manufacturer’s recommendations. Some systems may use electronic calibration data.

Evidence of Compliance:
✓ Records of calibration

MIC.64832 AMR Verification

Phase II

Verification of the analytical measurement range (AMR) is performed with matrix-appropriate materials, which at a minimum, include the low, mid and high range of the AMR, and the process is documented.

NOTE: If the materials used for calibration or for calibration verification include low, midpoint, and high values that are near the stated AMR, and if calibration verification data are within the laboratory’s acceptance criteria, the AMR has been verified; no additional procedures are required. If the calibration and/or calibration verification materials do not span the full AMR, or the laboratory extends the AMR beyond the manufacturer's stated range, the AMR must be verified by assaying materials reasonably near the lowest and highest values of the AMR.

Calibration, calibration verification, and validation of the analytical measurement range (AMR) are required to substantiate the continued accuracy of a test method. The CLIA regulations use the term “calibration verification” to refer to both verification of correct method calibration and verification of the analytical measurement range. This Checklist uses separate terms to identify two distinct processes that are both required for good laboratory practice.

Evidence of Compliance:
✓ Written procedure for AMR verification defining the types of materials used and acceptability criteria consistent with manufacturer’s instructions

REFERENCES

NEW/REVISED 04/21/2014

MIC.64834 AMR Verification Criteria

Phase II

Criteria are established for verifying the analytical measurement range and compliance is documented.

NOTE: The AMR must be verified at least every six months after a method is initially placed in service and if any of the following occur:
1. A change of reagent lots for chemically or physically active or critical components, unless the laboratory can demonstrate that the use of different lots does not affect the accuracy of patient/client test results, and the range used to report patient/client test data
2. If QC materials reflect an unusual trend or shift or are outside of the laboratory’s acceptable limits and other means of assessing and correcting unacceptable control values fail to identify and correct the problem
3. After major preventive maintenance or change of a critical instrument component
4. When recommended by the manufacturer

Evidence of Compliance:
✓ Written procedure defining the method, frequency and acceptability criteria for AMR verification

SEQUENCING

Inspector Instructions:

- Sampling of molecular microbiology test procedures
- Manufacturer’s interpretive software (most current version)
- How does your laboratory detect cross-contamination of samples/amplicons? What action would you take if cross contamination is suspected?

REVISED 07/29/2013

MIC.64835 Sequencing Data Criteria Phase II

Criteria are established for the acceptability and interpretation of primary sequencing data.

NOTE: The laboratory should follow manufacturer guidelines for rejection and acceptance criteria for assessing acceptability of sequencing results.

MIC.64840 Sequence Data Interpretation Phase I

The laboratory has a process in place to assure that interpretation of sequence data is based on the latest version of the manufacturer’s interpretive software.

REVISED 07/29/2013

MIC.64845 Alternative Sequencing Interpretive DB Phase II

If the laboratory uses alternative sequence interpretive databases, either alone or in conjunction with manufacturer’s software, the alternative databases have been validated for the interpretation of the sequence data.

NOTE: This validation can be completed using published literature that documents the interpretation of the sequence data (for example the ISA-USA resistance interpretation guidelines). If the use of alternative data bases is done by the clinician after laboratory reporting of sequence interpretation, this validation is not necessary.

Evidence of Compliance:
✓ Records of validation study if alternative interpretive databases are utilized, if applicable
There is a procedure to prevent or detect potential cross-contamination of samples and/or amplicons.

NOTE: Examples of procedures are the use of negative controls in each batch, the manufacturer’s use of Uracil N-glycosylase (UNG), or the fingerprinting program provided by the manufacturer.

If results of fingerprint analysis or negative control indicate a potential for sample and/or amplicon contamination, the laboratory has a written procedure in place to investigate and resolve the problem.

ASSAY VALIDATION/VERIFICATION

Inspector Instructions:

- Sampling of assay validation/verification studies
- How does your laboratory validate/verify assay performance prior to test implementation?

There is documentation that the laboratory has performed a validation/verification study prior to reporting patient results.

NOTE: The laboratory is required to verify certain performance characteristics of the test as outlined in the package insert for all testable specimen types. For qualitative tests this includes comparison of positive and negative test results to a comparable test method. Specimens for the validation/verification can include external control material, cultured organisms and proficiency testing material, and must include positive and negative patient samples. For quantitative tests, the manufacturer’s limit of detection, linearity, reportable range, and precision should be validated/verified by the laboratory, as well as a comparison of patient test results across the reportable range of the test. Specimens for the validation/verification can include quantitative external control material, cultured organisms (quantified) and proficiency testing material, and must include patient samples.

Refer to the section “Test Method Validation/Verification” in the All Common Checklist for additional details.
LABORATORY-DEVELOPED OR MODIFIED FDA CLEARED / APPROVED TESTS

This section must be used for all laboratory-developed tests* (qualitative, quantitative, or sequencing) as well as FDA cleared/approved tests in which the test methodology has been altered (for example, use of an alternative extraction method).

A laboratory-developed test (LDT) is defined as follows: A test used in patient management that has all of the following characteristics:

- The test is performed by the clinical laboratory in which the test was developed
- The test is neither FDA-cleared nor FDA-approved, or the laboratory has made a modification to manufacturer's instructions for an FDA-cleared/approved test (changes in sample types or collection devices are examples of common modifications)
- The test was first used for clinical testing after April 23, 2003

A laboratory is considered to have developed a test if the test procedure was created by the laboratory performing the testing, irrespective of whether fundamental research underlying the test was developed elsewhere or reagents (including ASRs), equipment, or technology integral to the test were purchased, adopted, or licensed from another entity.

* i.e. laboratory-developed tests using ASRs or reagents developed solely by the laboratory.

QUANTITATIVE ASSAYS: CALIBRATION & STANDARDS

This section of the checklist only applies to quantitative tests for which appropriate external materials exist.

This introduction discusses the processes of calibration, calibration verification, and analytic measurement range (AMR) verification.

DEFINITIONS:
CALIBRATION is the set of operations that establish, under specified conditions, the relationship between reagent system/instrument response and the corresponding concentration/activity values of an analyte. Calibration procedures are typically specified in the manufacturer's instructions, but may also be established by the laboratory.

CALIBRATION VERIFICATION denotes the process of confirming that the current calibration settings for each analyte remain valid for a test system. If calibration verification confirms that the current calibration settings for each analyte are valid, it is not necessary to perform a complete calibration or recalibration of the test system. Each laboratory must define limits for accepting or rejecting tests of calibration verification. Calibration verification can be accomplished in several ways. If the manufacturer provides a calibration validation or verification process, it should be followed. Other techniques include: 1) assay of the current method calibration materials as unknown specimens, and determination that the correct target values are recovered, and 2) assay of matrix-appropriate materials with target values that are specific for the test system.

MATERIALS SUITABLE FOR CALIBRATION VERIFICATION
Materials for calibration verification must have a matrix appropriate for the clinical specimens assayed by that method, and target values appropriate for the measurement system. Suitable materials may include, but are not limited to:

1. Calibrators used to calibrate the analytical measurement system
2. Materials provided by the analytical measurement system vendor for the purpose of calibration verification
3. Previously tested unaltered patient/client specimens
4. Primary or secondary standards or reference materials with matrix characteristics and target values appropriate for the method
5. Proficiency testing material or proficiency testing validated material with matrix characteristics and target values appropriate for the method

In general, routine control materials are not suitable for calibration verification, except in situations where the material is specifically designated by the method manufacturer as suitable for verification of the method's calibration process.

ANALYTICAL MEASUREMENT RANGE (AMR) is the range of analyte values that a method can directly measure on the specimen without any dilution, concentration, or other pretreatment not part of the usual assay process.

AMR VERIFICATION is the process of confirming that the assay system will correctly recover the concentration or activity of the analyte over the AMR. The materials used for verification must be known to have matrix characteristics appropriate for the method. The matrix of the sample (i.e. the environment in which the analyte is suspended or dissolved) may influence the measurement of the analyte. The method manufacturer may recommend suitable materials. The test specimens must have analyte values that, at a minimum, are near the low, midpoint, and high values of the AMR. Specimen target values can be established by comparison with peer group values for reference materials, by assignment of reference or comparative method values, and by dilution or admixture ratios of one or more specimens with known values. Each laboratory must define limits for accepting or rejecting verification tests of the AMR.

MATERIALS SUITABLE FOR AMR VERIFICATION
Materials for AMR verification should have a matrix appropriate for the clinical specimens assayed by that method, and target values appropriate for the measurement system. Materials may include, but are not limited to:

1. Linearity material of appropriate matrix, e.g. CAP Survey-based or other suitable linearity verification material
2. Proficiency testing survey material or proficiency testing survey-validated material
3. Previously tested patient/client specimens, unaltered
4. Previously tested patient/client specimens, altered by admixture with other specimens, dilution, spiking in known amounts of an analyte, or other technique
5. Primary or secondary standards or reference materials with matrix characteristics and target values appropriate for the method
6. Calibrators used to calibrate the analytic measurement system
7. Control materials, if they adequately span the AMR.

RECALIBRATION/CALIBRATION VERIFICATION and AMR VERIFICATION INTERVAL: Recalibration or calibration verification, and AMR verification must be performed at least once every 6 months. Successful calibration verification certifies that the calibration is still valid; unsuccessful calibration verification requires remedial action, which usually includes recalibration. The performance of recalibration or a calibration verification procedure resets the calendar to a new maximum 6-month interval before the next required reassessment. Test systems that are recalibrated more frequently than every 6 months do not require a separate calibration verification procedure.

In addition to the every 6 month requirement, laboratories must perform recalibration or calibration verification and AMR verification at changes in major system components, and at changes of lots of chemically or physically active reagents unless the laboratory can demonstrate that changing reagent lot numbers does not affect the range used to report patient/client test results. The director should determine what constitutes a verification of the AMR. Manufacturers' instructions should be followed.

The laboratory should establish other criteria, as appropriate, for recalibration/calibration verification. These include but are not limited to failure of quality control to meet established criteria, and major maintenance or service to the instrument.
Inspector Instructions:

READ
- Sampling of calibration and AMR policies and procedures
- Sampling of calibration records
- Sampling of AMR verification records

OBSERVE
- Sampling of calibration materials (labeling, storage, quality)

ASK
- What is your course of action if calibration is unacceptable?
- When was the last time you performed a calibration procedure and how did you verify the calibration?
- What is your course of action when results fall outside the AMR?

DISCOVER
- Further evaluate the responses, corrective actions, and resolutions for unacceptable calibration, unacceptable calibration verification, and results outside the AMR

Phase IICalibration Procedures

MIC.64868

Calibration procedures for each test system are adequate, and the calibration records are reviewed for acceptability.

REFERENCES

Phase IICalibration Materials

MIC.64870

High quality materials with test system and matrix-appropriate target values are used for calibration and calibration verification whenever possible.

NOTE: For example, if multiple specimen types are tested in a quantitative test, the test calibration must encompass the range for all expected values for each specimen type. If one calibration range is not sufficient, then more than one calibration range may be required.

Evidence of Compliance:
- ✓ Written procedure defining the use of appropriate calibration/calibration verification materials

REFERENCES

MIC.64872 Calibration Materials

All calibration materials used for non-FDA cleared/approved tests are documented as to quality.

NOTE: Commercial standards used to prepare calibrators require certificates of analysis. The laboratory should document the accuracy of a new lot of calibrators by checking the new lot against the current lot.

REFERENCES

Phase II

MIC.64880 Calibration Verification Criteria

Criteria are established for frequency of calibration or calibration verification, and the acceptability of results.

NOTE: Criteria may include:

1. At changes of reagent lots, unless the laboratory can demonstrate that the use of different lots does not affect the accuracy of patient/client test results and the range used to report patient/client test data
2. If QC materials reflect an unusual trend or shift or are outside of the laboratory’s acceptable limits, and other means of assessing and correcting unacceptable control values fail to identify and correct the problem
3. After major maintenance or service
4. When recommended by the manufacturer
5. At least every 6 months

Evidence of Compliance:
✓ Written procedure defining the method, frequency and limits of acceptability of calibration verification for each instrument/test system AND
✓ Records of calibration verification documented at defined frequency

REFERENCES

Phase II

MIC.64882 Recalibration

The system is recalibrated when calibration verification fails to meet the established criteria of the laboratory.

NOTE: An indication of a potential calibration failure would be external or kit controls with values that repeatedly fall outside of the established control range.

Evidence of Compliance:
✓ Written procedure defining criteria for recalibration AND
✓ Records of recalibration, if calibration or calibration verification has failed

Phase II

MIC.64884 AMR Verification

Verification of the analytical measurement range (AMR) is performed with matrix-appropriate materials, which at a minimum, include the low, mid and high range of the AMR, and the process is documented.
NOTE: If the materials used for calibration or for calibration verification include low, midpoint, and high values that are near the stated AMR, and if calibration verification data are within the laboratory's acceptance criteria, the AMR has been verified; no additional procedures are required. If the calibration and/or calibration verification materials do not span the full AMR, or the laboratory extends the AMR beyond the manufacturer's stated range, the AMR must be verified by assaying materials reasonably near the lowest and highest values of the AMR.

Calibration, calibration verification, and verification of the analytical measurement range (AMR) are required to substantiate the continued accuracy of a test method. The CLIA regulations use the term "calibration verification" to refer to both verification of correct method calibration and verification of the analytical measurement range. This Checklist uses separate terms to identify two distinct processes that are both required for good laboratory practice.

Evidence of Compliance:
✓ Written procedure for AMR verification defining the types of materials used and acceptability criteria consistent with manufacturer's instructions

REFERENCES
Sufficient information is documented regarding the nature of any probe or primer used in an assay to permit interpretation and troubleshooting of test results.

Evidence of Compliance:
✓ Records of probe details including oligonucleotide sequence, target, concentration, or purity, as applicable

REVISED 04/21/2014
MIC.64912 Current Primers/Probes Phase II

The laboratory has a process in place to evaluate nucleic acid tests for compatibility with currently circulating microbial strains.

NOTE: This can include, but is not limited to in silico analysis of compatibility of primers and probes with their intended targets. The performance of the assays in use should be assessed against newly described variants (e.g. Influenza H1N1) if they occur in the patient population served by the laboratory.

REVISED 07/29/2013
MIC.64915 Qualitative Cut-Off Phase II

For qualitative tests that use a cut-off value to distinguish positive from negative, the cut-off value is established initially, and verified with every change in lot or at least every 6 months.

NOTE: The limit of detection that distinguishes a positive from a negative result should be established or verified when the test is initially placed in service, and verified with every change in lot (e.g. new master mix), instrument maintenance, or at least every six months thereafter. Note that a low-positive control that is close to the limit of detection can satisfy this checklist requirement, but must be external to the kit (e.g. weak-positive patient sample or reference material prepared in appropriate matrix).

Evidence of Compliance:
✓ Written procedure for initial establishment and verification of the cut-off value AND
✓ Records of initial establishment and verification documented at defined frequency

SEQUENCING

Inspector Instructions:

- Sampling of molecular microbiology sequencing test procedures
- How does your laboratory detect cross-contamination of samples/amplicons? What action would you take if cross contamination is suspected?

REVISED 07/29/2013
MIC.64920 Sequencing Data Criteria Phase II

Criteria are established for the acceptability and interpretation of primary sequencing data.
NOTE: Test procedures must assure that each target is visualized adequately to produce an unequivocal sequence readout, whether by manual or automated methods. Point mutations in particular may be overlooked if the signals are low or unequal. One approach to preventing this problem is to perform sequencing in both directions (opposite strands).

MIC.64922 Sequencing Data Interpretation Phase II
The laboratory has a process in place to assure that appropriate databases are used for the interpretation of sequencing data.

NOTE: Data bases should be comprehensive and current.

REVISED 07/29/2013

MIC.64924 Sequence Data Correlation Phase II
The sequence data are correlated with available phenotypic data.

Evidence of Compliance:
✓ Records of result review including correlation with phenotypic data

MIC.64926 Sample/Amplicon Contamination Phase II
Procedures are in place to prevent or detect potential cross-contamination of samples and/or amplicons and to resolve problems from contamination of sequencing reactions.

NOTE: Examples of procedures are the use of negative controls in each batch, the manufacturer’s use of Uracil N-glycosylase (UNG), or the fingerprinting program provided by the manufacturer.

TEST PROCEDURES

Inspector Instructions:

- Sampling of molecular microbiology test procedures
- Sampling of melting temperature record monitoring
- Autoradiographs/gel photographs (low background, clear signal absence of bubbles)
- How is the endpoint of gel electrophoresis determined?
- What criteria are used to interpret autoradiographs or electrophoretic gels?

MIC.64930 Nucleic Acid Extraction/Purification Phase II
Nucleic acids are extracted and purified by validated methods.

NOTE: These can include methods reported in the literature, an established commercially available kit or instrument, or a laboratory-developed method.
Evidence of Compliance:
✓ Records to support nucleic acid extraction/purification is performed by a validated method

REVISED 07/29/2013

Phase II

MIC.64934 Melting Temperature

For tests that generate a result based on a melting temperature (Tm), appropriately narrow temperature ranges (± 2.5 ºC) are defined and monitored.

Phase II

MIC.64938 Autoradiograph Resolution/Gel Criteria

The autoradiographs and electrophoretic gel photographs are of sufficient resolution and quality (low background, clear signal, absence of bubbles, etc.) to permit the reported interpretation using objective criteria.

Evidence of Compliance:
✓ Written procedure that includes criteria for the resolution of bands

REFERENCES

Phase II

MIC.64940 Molecular Weight Markers

Known molecular weight markers that span the range of expected bands are used for each electrophoretic run.

Evidence of Compliance:
✓ Records of appropriate markers documented with each run

Phase II

MIC.64944 Visual/Fluorescent Markers

Visual or fluorescent markers are used to determine the endpoint of gel electrophoresis.

ASSAY VALIDATION

It is important to confirm the analytical performance characteristics of the assay and to confirm the clinical validity of the assay. Performance characteristics that should be determined prior to reporting patient test results include analytical and diagnostic sensitivity and analytical and diagnostic specificity, precision, linearity (for quantitative tests), the reportable range of patient test results; the reference range (normal values); performance with clinical specimens; and any other applicable performance characteristic. Refer to the section “Test Method Validation” in the Laboratory General checklist for additional details.

Analytic sensitivity refers to the ability of a test to detect a given analyte (i.e. the lower limit of detection). Analytic specificity refers to the degree to which related organisms are not detected by a test.

Precision refers to the reproducibility of a test result (e.g. within-technologist, between-technologist, within-run, and between-run).

Clinical sensitivity refers to the ability of a test to detect a disease or clinical condition, while clinical specificity refers to the degree to which a test is negative when disease is absent.

Diagnostic sensitivity and specificity must be determined relative to some "gold standard" (e.g. biopsy findings, clinical findings, etc.). The sensitivity of an assay equals [TP/(TP+FN)] X 100 and the specificity of an assay equals [TN/(TN+FP)] X 100. (TP=true positive, TN=true negative, FN=false negative, FP=false positive.) Determinations
of sensitivity and specificity should be done in a “blinded” fashion (i.e. without prior knowledge of the patient's disease status). For some infections, it may not be possible to identify large numbers of positives (i.e. patients with the infection) to establish the diagnostic sensitivity of the assay. In such instances, the laboratory should procure as many positive cases as is reasonably possible for method validation and in addition cite any publications that have investigated the diagnostic sensitivity of the assay.

Inspector Instructions:

- Sampling of assay validation studies
- Sampling of laboratory-developed patient test reports including methodology, statement and performance characteristics
- Sampling of patient test reports performed with Class I ASRs including appropriate disclaimer
- How does your laboratory validate assay performance prior to test implementation?
- How do you ensure that the modified FDA-cleared/approved test exhibits equal or superior performance?

REVISED 07/29/2013

MIC.64952 Validation Study

There is documentation that the laboratory has performed a validation study prior to reporting patient results.

REFERENCES

MIC.64956 Modified FDA-Cleared/Approved Assay

If the laboratory modifies an FDA-cleared/approved assay, the modified procedure has been validated to yield equivalent or superior performance.

Evidence of Compliance:

✓ Records of validation studies for modified FDA-cleared/approved assays

REFERENCES

MIC.64960 Validation Studies - Specimen Selection

Validation studies were performed with an adequate number and representative (reasonable) distribution of samples for each type of specimen (e.g. blood, fresh/frozen tissue, paraffin-embedded tissue).

NOTE: Validation studies must include an adequate number of positive and negative samples representing the specimen types used in the assay (e.g. plasma, blood, CSF). Samples may include spiked specimens (suspensions of target added to appropriate matrix), if patient samples are not available or inadequate in number across the dynamic range of a quantitative assay.

Evidence of Compliance:

✓ Records of validation studies
MIC.64964 Validation Studies - Specimen Selection Phase II

Validation studies include specimens representing each strain or genotype, when appropriate.

Evidence of Compliance:
✓ Records of validation studies

MIC.64968 Validation Study Comparison Phase II

The results of each validation study were compared to another valid test, such as a comparison to another test method or specimen exchange with a laboratory performing the same type of test in a similar fashion.

NOTE: There may not be a closely related test to be used for comparison. In such cases, the test performance (sensitivity and specificity) should be assessed in relation to the patient's clinical diagnosis and in addition assessed by exchanges of specimens with a laboratory that performs the test in a similar fashion.

Evidence of Compliance:
✓ Records of comparison and evaluation of each validation study to another test method OR records of comparison using specimen exchange with another laboratory

MIC.64972 Reference/Reportable Range Qualitative Phase II

For qualitative assays, the reference value and reportable range are defined.

Evidence of Compliance:
✓ Written procedure defining reference and reportable range for each test

REFERENCES

MIC.64976 Reference/Reportable Range - Quantitative Phase II

For quantitative assays, the reference and reportable ranges are defined.

NOTE: Reference and reportable ranges are pertinent to quantitative assays (e.g. viral load). The "reference range" is the range of results expected in the "normal" population, while the "reportable range" encompasses the full range of reported values. The laboratory must define the analytic measurement range (AMR) as described in the "Quantitative Assays; Calibration and Standards" section of the checklist. The laboratory must also determine how to handle positive patient results below or above the AMR, since numerical values outside the AMR may be inaccurate. For example, these may be reported as <x or >y, or they may be reported as "low positive" or "high positive" along with an explanation that values outside the linear range cannot be quantitated, or the sample may be concentrated or diluted and rerun to calculate an accurate value within the reportable range.

Evidence of Compliance:
✓ Written procedure defining reference and reportable range for each test

REFERENCES
NOTE: For analytes without an international quantitative standard, it may not be possible to define numerical accuracy.

REFERENCES

REVISED 07/29/2013

MIC.64984 LDT Report

Reports for laboratory-developed assays contain a description of the method, a statement that the assay was developed by the laboratory, and appropriate performance characteristics.

MIC.64988 ASR Report

If patient testing is performed using analyte-specific reagents (ASRs) obtained or purchased from an outside vendor, the patient report includes the disclaimer required by federal regulations.

NOTE: ASRs are antibodies, both polyclonal and monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which, through specific binding or chemical reaction with substances in a specimen, are intended for use in a diagnostic application for identification and quantification of an individual chemical substance or ligand in biological specimens.

An ASR is the active ingredient of a laboratory-developed test system.

This checklist requirement concerns Class I ASRs. Class I ASRs are not subject to preclearance by the Us Food and Drug Administration (FDA) or to special controls by FDA. Most ASRs are Class I. Exceptions include those used by blood banks to screen for infectious diseases (Class II or III), or used to diagnose certain contagious diseases (e.g. HIV infection and tuberculosis) (class III).

If the laboratory performs patient testing using Class I ASRs, federal regulations require that the following disclaimer accompany the test result on the patient report: “This test was developed and its performance characteristics determined by (laboratory name). It has not been cleared or approved by the US Food and Drug Administration.”

The CAP recommends additional language, such as “FDA does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments (CLIA) as qualified to perform high complexity clinical laboratory testing.”

The disclaimer is not required for tests using reagents that are sold in kit form with other materials or an instrument, nor reagents sold with instructions for use, nor reagents labeled “for in vitro diagnostic use” (IVD) by the manufacturer.

The laboratory must establish the performance characteristics of tests using Class I ASRs in accordance with the Assay Validation section of this checklist.

REFERENCES

PERSONNEL - LABORATORY-DEVELOPED TESTS
Inspector Instructions:

- Documentation of education and experience

MIC.65000 Bench Testing Supervision

If the laboratory performs laboratory-developed or modified FDA-cleared/approved molecular testing, the person in charge of bench testing/section supervisor of molecular microbiology has education equivalent to an associate's degree (or beyond) in a chemical, physical, biological science or medical technology and at least 4 years experience (one of which is in molecular diagnostic testing) under a qualified section director.

Evidence of Compliance:

✓ Records of qualifications including degree or transcript, certification/registration, current license (if required) and work history in related field