Practical Effusion Cytology

A Community Pathologist’s Approach to Immunocytochemistry in Body Fluid Cytology

Emily E. Volk, MD
William Beaumont Hospital
Troy, MI

© College of American Pathologists 2004. Materials are used with the permission of Emily E. Volk, MD, FCAP.
Overview

• Prudent use of immunocytochemistry (ICC)
• Applications of ICC in body fluid cytology
• Pertinent case reviews
Pre-Analytical

• Form differential diagnosis
 – Morphology of conventional preparations
 – Clinical scenario

• Develop question to be answered by ICC

• Ensure sample used contains cells in question

• Adequate fixation
 – Alcohol fixed preparation; Thin Layer; Cell Blocks
Analytical

- Positive and negative controls
- Ideal if cytology sample used for control
 - Most labs use tissue control for convenience
- Notice the pattern of staining in positive controls
 - Membranous, cytoplasmic or nuclear.
- Expect heterogeneity of immunostaining within a sample
- Normal cells may have capability to react with ICC
ICC
Common Causes of False-Positive Results

• Non-specific antibody binding
• Misinterpretation of population as neoplastic
• Necrotic cells
• Inappropriate fixation
• Antigen diffusion
• Antibody concentrations too high

ICC
Common Causes of False-Negative Results

• Sample lacks neoplastic population
• Antigen expression below sensitivity of antibody
• Antibody concentration is too low
• Poor fixation
• Antigen diffusion
 – S100 and GCDFP-15 in alcohol fixatives
• Insufficient antigen retrieval
• Papanicolaou decolorization

Body Fluid Cytology
WBH-Troy 2003

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>Total</th>
<th>Positive for Malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF</td>
<td>88</td>
<td>5</td>
</tr>
<tr>
<td>Pericardial</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Pleural</td>
<td>201</td>
<td>41</td>
</tr>
<tr>
<td>Peritoneal</td>
<td>89</td>
<td>31</td>
</tr>
<tr>
<td>Peritoneal wash</td>
<td>67</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>452</td>
<td>83 (18%)</td>
</tr>
</tbody>
</table>
Immunocytochemical Analysis
Is it useful?

<table>
<thead>
<tr>
<th></th>
<th>Portion of workload</th>
<th>Diagnostically useful</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBH-Troy</td>
<td>0.9%</td>
<td>70.4%</td>
</tr>
<tr>
<td>Shield et al.</td>
<td>1.6 %</td>
<td>75.8 %</td>
</tr>
<tr>
<td>Royal Brisbane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immunocytochemical Analysis

When is it useful?

- Poorly differentiated malignancy
 - Subclassification
 - Primary site determination
- Discrimination of mesothelial cells and metastatic malignancy
- Mesothelioma vs. adenocarcinoma
Case 1

- 76 year old woman
- New onset ascites
- Previous history of breast cancer status post mastectomy and radiation therapy
Case 1
Case 1
H &E Cell Block
Case 1

BerEp4
Case 1
CK 7
Case 1
WT-1
Case 1

• Positive ICC:
 – CK 7 (cytoplasmic)
 – BerEp4 (membranous)
 – WT-1 (nuclear)

• Negative ICC:
 – CK 20
 – TTF-1 and Surfactant protein A
 – Calretinin and thrombomodulin
CK7/CK20 ICC Profile

• CK7+/CK20-
 – Non-small cell carcinoma of lung
 – Breast carcinoma (ductal and lobular)
 – Non-mucinous ovarian carcinoma
 – Endometrial adenocarcinoma
 – Mesothelioma
CK7/CK20 ICC Profile

• CK7+/CK20+
 – Urothelial carcinoma
 – Pancreatic carcinoma
 – Ovarian mucinous carcinoma
 – Merkel cell carcinoma

• CK7-/CK20+
 – Colorectal adenocarcinoma
CK7/CK20 ICC Profile

• CK7-/CK20-
 – Small cell carcinoma of lung
 – Squamous cell carcinoma of lung
 – Prostate adenocarcinoma
 – Renal cell carcinoma
 – Hepatoma
BerEp4

- Monoclonal antibody to two glycopeptides on human epithelial cells
- Usually stains in cell membrane distribution
 - Adenocarcinomas of various sites (86.7%)*
 - Epithelial mesothelioma (0.86%)*

Sheibani et al. AJSP. 1991;15: 779-784
WT-1
Antibody to Wilms Tumor Suppressor Gene Products

• Gene resides on 11p13
 – Inactivation causes susceptibility to Wilms tumor
 – Tissues of mesodermal origin
WT-1
Antibody to Wilms Tumor Suppressor Gene Products

• Nuclear immunostaining
 – Mesothelioma (92.9%)
 – Papillary carcinoma of ovary (100%)
 – Renal cell carcinoma (100%)

• Negative staining
 – Adenocarcinoma of lung
 – Squamous cell carcinoma of lung
 – Metastatic breast carcinoma
 – Metastatic colon carcinoma

Diagnosis:

- Metastatic adenocarcinoma consistent with serous surface or ovarian origin.
- Left ovarian mass later confirmed on pelvic CT scan.
Case 2

- 73 year old woman with new onset ascites
Case 2
Case 2

WT-1
Case 2
Cytokeratin AE 1/3
Case 2
Calretinin
Cytoplasmic and nuclear staining
Case 2
CK 5/6
Cytoplasmic staining
Case 2

• Positive ICC
 – Calretinin
 – Cytokeratin AE 1/3
 – Cytokeratin 5/6
 – WT-1 (nuclear)

• Negative ICC
 – B72.3
 – LeuM1 (CD15)
 – CEA
Case 2
Diagnosis

- Malignant mesothelioma
Epithelial Mesothelioma
Positive ICC markers

Cytokeratins

• AE 1/3
 – Good screening antibody
 – Broad spectrum

• CAM 5.2 (keratins 8/13)

• CK 5/6
 – High molecular weight keratin
 – Epithelial mesotheliomas strongly positive
 – Pulmonary adenocarcinoma negative to weak positivity
 – Squamous cell carcinoma +
 – Urothelial carcinoma (50%) +
 – Reactive mesothelial cells +
Epithelial Mesothelioma
Positive ICC markers
Calretinin

- Calcium binding protein similar to S-100
- Cytoplasmic and nuclear staining
- One of the most specific and reproducible positive markers
Epithelial Mesothelioma
Positive ICC markers
Epithelial Membrane Antigen
Human milk fat globule protein-2 (HMFG-2)

- Cell membrane staining pattern
- Adenocarcinomas show cytoplasmic staining
- May see membranous staining in non-mucinous BAC/ papillary RCC
- Benign mesothelial cells usually negative
Epithelial Mesothelioma
Positive ICC markers
Thrombomodulin

- Plasma membrane related glycoprotein with anticoagulant activity
- Thick membranous staining in malignant mesothelioma
- Thin membranous staining in reactive mesothelial cells
- Cytoplasmic staining may be seen in adenocarcinoma
Epithelial Mesothelioma

Positive ICC markers

- **N-cadherin**
 - Strong positivity with malignant mesothelioma
 - Focal weak in pulmonary adenocarcinoma

- **WT-1**
 - Nuclear staining of malignant mesothelioma, papillary ovarian tumors, and RCC
Epithelial Mesothelioma

Negative ICC markers

• Carcinoembryonic antigen (CEA)
 – 85-100% of pulmonary adenocarcinoma positive
• Leu-M1 (CD 15)
 – 50-100% of pulmonary adenocarcinoma positive
• B72.3
 – 84-96% of pulmonary adenocarcinoma positive
 – 10% epithelial mesothelioma positive
• BerEP4
Desmin reactivity of mesothelial cells

• Strong cytoplasmic reactivity in 22 of 24 cases (92%) of reactive mesothelial cells
• All cases of malignant mesothelioma and metastatic adenocarcinoma were negative
• Archival paraffin cell block material from body fluids
• ICC to determine malignancy
 – Exercise caution
 – More data before widespread use

Case 3

- 55yo man with new onset right pleural effusion
- History of smoking-40 pack years
Case 3
EMA
Diffuse cytoplasmic staining
Case 3
CD 15
Cytoplasmic staining
Case 3
Surfactant Protein A
Cytoplasmic staining
Case 3
ICC

- EMA+ (cytoplasmic)
- CD 15 (Leu-M1) +
- SPA+
- Calretinin-
- Thrombomodulin-
Diagnosis

• Metastatic lung adenocarcinoma
Surfactant Protein A (SPA)

- Antibodies to surfactant apoproteins
- Granular cytoplasmic positivity in primary lung adenocarcinoma
Thyroid Transcription Factor 1 (TTF-1)

- Member of the NKx2 family of transcription factors

- Positive nuclear staining
 - Thyroid tumors
 - Lung tumors
 - Adenocarcinoma
 - Small cell carcinoma

- Cytoplasmic staining
 - Hepatocellular carcinoma*

Summary
CAVEATS FOR ICC

- Know the antigenic profiles of the tumors in your differential diagnosis.
- Pay attention to controls.
- Identify which cells are staining.
- Scrutinize the positive cells for their pattern of reactivity.
Immunohistochemistry
Web site

• www.immunocentral.com
• www.immunoquery.com