Welcome to CAP’s IVM Webinar Series sponsored by the In Vivo Microscopy Project Team

This webinar on “How IVM Could Improve Our Practice as Pathologists” is presented by Lida P. Hariri, MD, PhD.

Your host is Jill Kaufman, PhD. For comments about this webinar or suggestions for upcoming webinars, please contact Jill Kaufman at jkaufma@cap.org

THE WEBINAR WILL BEGIN MOMENTARILY. ENJOY!
How IVM Could Improve Our Practice as Pathologists

Lida Hariri, MD, PhD, FCAP

February 27, 2014
Lida Hariri, MD, PhD, FCAP

- PhD Biomedical Engineering
- Pathology residency/fellowship: MGH
- Practicing pathologist at MGH
- Subspecialty: Pulmonary Pathology
- > 11 years experience in optical imaging
- Member of the IVM workgroup
Disclaimer

The College does not permit reproduction of any substantial portion of the material in this Webinar without its written authorization. The College hereby authorizes attendees of the CAP Webinar to use the PDF presentation solely for educational purposes within their own institutions. The College prohibits use of the material in the Webinar – and any unauthorized use of the College’s name or logo – in connection with promotional efforts by marketers of laboratory equipment, reagents, materials, or services.

Opinions expressed by the speaker are the speaker’s own and do not necessarily reflect an endorsement by CAP of any organizations, equipment, reagents, materials or services used by participating laboratories.
Disclosure

- Dr. Hariri has no relevant financial relationships with commercial interests to disclose
What is “In Vivo Microscopy (IVM)?”

Definition of IVM used by the CAP Workgroup:
A new field where microscopic images are obtained in real time from living patients

Ex vivo applications of IVM:
• … where microscopic images are obtained in real time from living cells or tissues
• Reagent-free, label-free or otherwise minimally processed specimen
Bridging the Radiology/Pathology Divide
What can IVM provide us as pathologists?

Our objectives

• Improve biopsy interpretation
 o Guide biopsy site selection
 o Additional virtual tissue volumes

• Assess tissue margins
 o Ex vivo in frozen section
 o In vivo to assess margins intraoperatively

• Assess tissues where it is unsafe to biopsy
 o i.e. coronary arteries, eye pathology
Examples of Imaging Modalities that provide IVM

- Optical coherence tomography
- Photoacoustic tomography
- Confocal and multiphoton microscopy
- Spectroscopy
 - Raman spectroscopy
 - Near infrared spectroscopy
Optical Coherence Tomography

- Cross-sectional (x-z) imaging of tissue structure
- Similar to low power microscopy (4x objective)
- < 10 µm axial resolution (z)
- Analogous to Ultrasound

- 10-30 µm transverse resolution (x)
- < 3 mm penetration depth
- Non-destructive
- No transducing medium
OCT Imaging Applications

- Retinal
- Coronary
- Gastrointestinal
 - Esophageal
 - Colonic
- Respiratory
- Ovarian
- Breast
- Renal
- Dermatology

Courtesy of Boris Povazay and Wolfgang Drexler. Medical University of Vienna. Austria.
Objective 1: Biopsy Guidance

IVM to improve biopsy interpretation

- Assess biopsy site selection during procedure to reduce sampling error and increase diagnostic yield
- Interpret volumetric imaging data sets as a form of “virtual” tissue to accompany physical tissue biopsies
Flexible imaging probe easily placed in standard 21-gauge TBNA needle

Needle-based OCT Probes

Wu Y et al. IEEE Selec Topics Quant Elec. 16(4). 2010
Vacuum-assisted OCT Needle Biopsy Probe

Forceps OCT biopsy probes

http://www.spectrascience.com/

Song C. BMOES. 4(7). 2013
OCT Endoscopy: Guided Biopsy for Barrett’s Esophagus

1. Volumetric OCT Acquisition

2. Image Assessment and Interpretation

3. Target selection

4. Laser Marking

5. Endoscopy with Biopsy Acquisition and Histopathologic Analysis of Biopsy Sites

OCT guided biopsy of lung nodules

A work in progress that exemplifies the need for pathologists and optical engineers to collaborate
Biopsy of Pulmonary Nodules

Transthoracic needle aspiration:
- High diagnostic yield
- Increased risk of pneumothorax

Transbronchial needle aspiration:
- Lower risk of pneumothorax
- Variable diagnostic yield

http://library.bjmu.edu.cn

www.olympus.es
Currently Used Guidance Techniques

Endobronchial Ultrasound

Electromagnetic Navigation:

Diagnostic Yield is still low for lesions < 3.0 cm
Biopsy Triage!

To Pathology Lab

Courtesy of Dr. Kevin Leslie, Mayo Clinic, Scottsdale, AZ
Needle Biopsy of Lung Nodules

Target Lung Nodule

Miss Nodule
- Normal Airway
- Normal Parenchyma

Tumor: Diagnostic!

Hit Nodule
- Necrosis: Not Diagnostic
- Fibrosis: Not Diagnostic

Animations Courtesy of Dr. Alex Chee, University of Calgary
Needle Biopsy of Lung Nodules

Target Lung Nodule

Hit Nodule

Tumor: Diagnostic!

Necrosis: Not Diagnostic

Fibrosis: Not Diagnostic

Animation Courtesy of Dr. Alex Chee, University of Calgary
We need a high resolution imaging modality to:

Complement EBUS and ENB
Assess the needle position after placement
Give immediate feedback about placement site

So what is missing in biopsy guidance?
OCT Biopsy Guidance in Lung Nodules

Hariri LP et al. J Vis Exp. 71. 2013
Flexible imaging probe easily placed in standard 21-gauge TBNA needle

Needle-based OCT: Lung Parenchyma

Hariri LP et al. Chest. 144(4). 2013
Needle-based OCT: Lung Nodule

Hariri LP et al. Chest. 144(4). 2013
Differentiating nodules from parenchyma with OCT

High Sensitivity and Specificity (> 95%) for all readers: Pathologists, Pulmonologists, OCT Experts

Hariri LP et al. Chest. 144(4). 2013
Structural OCT can differentiate tumor from airway, parenchyma, and necrosis.

Cannot differentiate solid tumor from fibrosis

Polarization Sensitive OCT
Measures birefringence in organized tissues like collagen

SCC with dense established fibrosis
Adenocarcinoma with early fibrosis
Carcinoid tumor with no fibrosis

OCT Guided Biopsy of Lung Nodules: The Complete Picture

Target Lung Nodule

Miss Nodule
- Normal Airway
- Normal Parenchyma

Tumor: Diagnostic!

Hit Nodule
- Necrosis: Not Diagnostic
- Fibrosis: Not Diagnostic

Structural OFDI

Structural OFDI: Differentiate normal elements from tumor

PS-OFDI: Differentiate fibrosis from tumor
Biopsy Guidance: What this means for pathology

Performed by pulmonologist, but will aid pathologist

- Target lung nodules with needle-based OCT in vivo during bronchoscopic biopsy
- Use OCT to increase tumor yield for pathology
- Pathologist acts as consultant for difficult cases

Performed by pathologist

- Assess “virtual tissue volumes” as a complement to standard biopsy to aid diagnostics

© 2014 College of American Pathologists. All rights reserved.
Large volume “virtual” tissue to accompany biopsy

1. OCT provides views of tissue microarchitecture comparable to low power (4x) microscopy

2. Tissue volumes are orders of magnitude larger than biopsy
3D Reconstruction: Cartilaginous Hamartoma
Objective 2: Tissue margins

IVM to assess tissue margins

- Ex vivo to assess margins in frozen section
- In vivo to assess margins intraoperatively
Full-Field OCT to assess lung carcinoma
Full-Field OCT
Full Field OCT: Normal Lung

© 2014 College of American Pathologists. All rights reserved.

Jain M. J Path Inform. 4(26). 2013
Full Field OCT: Normal Lung
Full Field OCT: Lung Adenocarcinoma
Full-Field OCT in the frozen section lab

- FFOCT as an adjunct to frozens for intra-operative consultation
 - Surgical margin assessment
- FFOCT to assess adequacy of biopsy material in freshly excised tissue
- FFOCT in bio-banking to confirm tumor is present before cryopreservation
IVM to Assess Breast Excision Margins
Assessing Breast Excision Margins with OCT

Breast Excision Margins with OCT: Negative Margin

Breast Excision Margins with OCT: Positive Margins

<table>
<thead>
<tr>
<th></th>
<th>Histology (Positive)</th>
<th>Histology (Negative)</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT (Positive)</td>
<td>9 (TP)</td>
<td>2 (FP)</td>
<td>11</td>
<td>PPV = 82%</td>
</tr>
<tr>
<td>OCT (Negative)</td>
<td>0 (FN)</td>
<td>9 (TN)</td>
<td>9</td>
<td>NPV = 100%</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>11</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity = 100% Specificity = 82%

Intraop margin assessment with OCT: Clinical Trial

- Multi-center, randomized blinded clinical trial
- Intraoperative imaging in partial mastectomy:
 - Excised breast margins
 - In vivo surgical cavity
- Compare surgical re-excision rates between standard of care partial mastectomy and intraoperative imaging with partial mastectomy

Objective 3: Tissue that cannot be biopsied

IVM to assess tissues where it is unsafe to biopsy

i.e. coronary arteries, eye pathology
IVM in Coronary Artery Pathology
IVM in the Coronary Arteries

Witnessed Plaque Rupture with OCT

IVM in Retinal Pathology
IVM in Retinal Pathology

Drexler W and Fujimoto J. Progress in Retinal and Eye Research. 27(1). 2008
IVM in Retinal Pathology: 3D retinal visualization

IVM in Retinal Pathology: Commercial System

http://buea.net/services-offered/retina/
Ultra-High Resolution OCT
Micro-OCT: Atherosclerotic Plaque

Optical Coherence Microcopy_ Normal Kidney

Lee HC, et al. Biomedical Optics Express. 4(8). 2013
The Role of the Pathologist

- OCT provides high resolution architectural images similar to histopathology

- Pathologists already have strengths in
 - Interpreting high magnification/resolution microscopy
 - Pattern recognition
 - Understanding of pathology entities
 - Histological features
 - Differential diagnosis

Pathologists are well suited to interpret high resolution imaging as an adjunct to histopathology
“Will IVM replace traditional pathology?”

No

- Sensitivity/specificity in tested applications not 100%
- Resolution not high enough
- You are there, take a biopsy!
 - Histology is the gold standard
 - Differential diagnosis in many scenarios is vast
 - Molecular testing
“IVM seems like a clinician’s tool—why should I care about it?”

1) We are the end beneficiaries of IVM:

- IVM has a lot of potential to increase the quality of our tissue samples
 - Guided biopsy sampling- Barrett’s esophagus
 - Increased tumor yield- Lung nodule biopsy

- Our expertise as pathologists is needed to help identify applications where IVM can make big impacts
“IVM seems like a clinician’s tool—why should I care about it?”

2) IVM assessments will become more complex:

- IVM is pretty new and so far, its assessments are straightforward
 - Tumor versus non-tumor elements
 - Diagnosis where there are few options

- As IVM applications develop, the complexity of interpreting IVM images will also develop
 - Will require knowledge pathologists already have: histologic features, differential diagnosis, etc

© 2014 College of American Pathologists. All rights reserved.
“IVM seems like a clinician’s tool—why should I care about it?”

3) IVM needs a defined expert:

• For example, many clinicians can assess CT scans but that does not make them experts in radiology
• Similarly, many clinicians may use and interpret IVM
• IVM is in essence a form of microscopy, and as such pathologists are the obvious choice as IVM experts
Scenarios of IVM in Pathology

Ex vivo

Assess adequacy of tissue biopsy - Increase Tumor Yield

Intraoperative consult - Part of frozen section assessment

Guide tissue sampling in the grossing room
Scenarios of IVM in Pathology

In vivo

Real-time diagnosis in endoscopy or interventional suite
- Pathologist present during procedure
- At remote site using viewing workstation

As Part of Sign-out

Pathologist views images off-line after procedure

Interprets images as a complement to standard histology (particularly in tissue biopsy)
How can we get involved as pathologists?

Pathologist inherently have the skills needed to become IVM experts, but we have to take the reigns.

- Identify clinical scenarios where IVM can make impacts
- Participate in ex vivo and in vivo validation studies
- Be key players in instituting and interpreting high resolution imaging as part of our pathology practice

Email: Lhariri@partners.org
Acknowledgements

Suter Optical Imaging Laboratory

Melissa Suter, PhD
David Adams, PhD
Alyssa Miller
Yan Wang, PhD
Matt Applegate
Alex Chee, MD
Eddie Tan, PhD

MGH Department of Pathology

Mari Mino-Kenudson, MD
Eugene Mark, MD
Stephen Conley, BS
Sven Holder, BS

Wellman Center for Photomedicine

Brett Bouma, PhD
Guillermo Tearney, MD, PhD
Martin Villiger, PhD
Milen Shishkov, PhD
Photopathology

MGH Pulmonary and Critical Care

Benjamin Medoff, MD
Colleen Channick, MD
Colleen Keyes, MD

MGH Thoracic Surgery

Michael Lanuti, MD

Funding Sources

National Institute of Health
- R01CA167827
- R00CA134920
- P41EB015903
Save the Date for These Upcoming FREE IVM Webinars or Listen to past Webinars

• Upcoming Webinars
 o Ex vivo pathology applications of IVM: Cooler than Frozen
 o October 23 at 11 am Central
 o Richard M. Levenson, MD, FCAP

• Archived Webinars
 o Ex Vivo Applications of IVM: Shedding a different light on cells and tissue
 o Chapter 7 from CAP eBook: New Paths...New Choices: Pathology in an Era of Advancing Science and Disruptive Health Economics

Register for any upcoming or archived webinars by going to cap.org/webinars
CAP’s Pathology IVM Resource Guide
Printed Versions Now Available

• created to assist pathologists who are considering providing or developing in vivo microscopy skills and services within the next 24 months

• free for members

• available via registration on the Member tab of www.cap.org or through this link
The CAP has created the Pathology Resource Guides, a tool to assist pathologists in understanding key emerging technologies. These Resource Guides are a new CAP member benefit available at no charge. Printed versions of the Resource Guides are available to members and non-members.

Molecular Diagnostic (single gene, small panel)
Genomic Analysis (large panels, exome, genome)
Digital Pathology

Register through the CAP member tab. You will receive periodic updates for two years.

Questions? Contact capguides@cap.org.
A New CAP Tool- Short Presentations On Emerging Concepts (SPECs)

• Pathology SPECs are:
 o Prewritten PowerPoint presentation on emerging topics where molecular testing plays a key role in patient management.
 o Designed for pathologists to customize and use for educating other physicians and health care leaders in their communities.
 o Focused on molecular tests that are actionable to patient care today.

• Now Available:
 — Emerging Concepts in the Workup of Colorectal Cancer
 — Emerging Concepts in Therapeutic Guidance for Metastatic Melanoma
 — Emerging Concepts in the Diagnosis and Workup of Thyroid Cancer
 — Emerging Concepts in Colorectal Cancer Hereditary Non-Polyposis Cancer (Lynch Syndrome)
 — Emerging Concepts in the Workup of Polycythemia and Thrombocythemia: JAK2

• To register, go to the CAP Member tab on cap.org. You do not need to be a member to utilize this free tool.
See, Test & Treat® brings cancer screenings to women in need!

- See, Test & Treat is a CAP Foundation-funded program that brings free, same-day cervical and breast cancer screening, diagnoses and follow-up care to women in medically underserved communities across the U.S.

- CAP member pathologists’ partner with gynecologists, radiologists and other medical professionals to lead See, Test & Treat programs in hospitals, clinics and other facilities

- Women learn the importance of preventive care through annual exams, a Pap test, Mammogram and a healthy lifestyle

See, Test & Treat Needs Your Financial Support
Visit foundation.cap.org and click on DONATE!
THANK YOU!

Thank you for attending our webinar “How IVM Could Improve Our Practice as Pathologists” by Lida Hariri, MD, PhD, FCAP.

For comments about this webinar or suggestions for upcoming webinars, please contact Jill Kaufman, PhD, Director of Personalized Health Care at jkaufma@cap.org

NOTE: There is no CME/CE credit available for today’s free webinar.